• Title/Summary/Keyword: MY microbial consortium

Search Result 3, Processing Time 0.019 seconds

Degradation of BTX by Aerobic Microbial Consortium (호기성 미생물 컨소시엄에 의한 BTX의 분해)

  • 문종혜;김종우;박진수;오광중;김동욱
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.61-65
    • /
    • 2001
  • In this study, a BTX degrading microbial consortium was obtained from the activated sludges of a BTX releasing sewage water and city sewage water treatment plant. The MY microbial consortium was developed for benzene and toluene degradation, whereas the MA microbial consortium was developed for xylene isomers. The major microorganism of the MA consortium was identified as Rhodococcus ruber DSM 43338T, whereas that of the MY consortium was Rhodococcus sp. In terms of the degradation of a single component, the removal rate of benzene was fastest and decreased in order; toluene, o-xylene, p-xylene and m-xylene. For degradation of mixed BTX, most BTX were degraded within 108 hours and the degradation rate showed either stimulatory or inhibitory effects depending on the composition. MA and MY microbial consortium obtained in this study may be used effectively to remove BTX biologically.

  • PDF

Removal of Benzene by the Fluidized Bed Bioreactor including Microbial Consortium (혼합균주를 함유한 유동층 생물반응기를 이용한 벤젠의 제거)

  • 주준걸;김연재;조성기;오광중;김종우;김동욱
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.206-209
    • /
    • 2004
  • MY microbial consortium were obtained from sludges of wastewater to degrade benzene effectively and Rhodococcus ruber DSM 43338T was identified as major microorganism. The fluidized bed biofilter including MY microbial consortium showed critical removal rate of benzene at 32 g/㎥ h, and maintained stable removal efficiency for 17 days of continuous operation.

Removal of Hydrogen Sulfide, Ammonia, and Benzene by Fluidized Bed Reactor and Biofilter

  • Kim, Chong-Woo;Park, Jin-Su;Cho, Sung-Ki;Oh, Kwang-Joong;Kim, Young-Sik;Kim, Dong-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.301-304
    • /
    • 2003
  • In this study, hydrogen sulfide ($H_2S$), ammonia ($NH_3$), and benzene, which represent the major odor from a natural leather process plant, were removed using a fluidized bed bioreactor and biofilter including Thiobacillus sp. IW and a MY microbial consortium. The critical removal rate was $12g m^{-3}h^{-1}\;for\;H_2S,\;11g m^{-3}h^{-1}\;for\;NH_3\;and\;28 g m^{-3}h^{-1}$ for benzene by the fluidized bed bioreactor, and $8.5g m^{-3}h^{-1}\;for\;H_2S\;7g m^{-3}h^{-1}\;for\;NH_3,\;and\;25 g m^{-3}h^{-1}$ for benzene in the biofilter. The average removal efficiency of $H_2S$, $NH_3$, and benzene by continuous operation for over 30 days with the fluidized bed bioreactor was $95{\pm}3\%,\;99{\pm}1\%,\;and\;98{\pm}5\%$, respectively, whereas that with the biofilter was $96{\pm}4\%,\;95{\pm}4\%,\;and\;97{\pm}3\%$, respectively. Therefore, the critical removal rate of $H_2S$, $NH_3$, and benzene was higher in the fluidized bed bioreactor, whereas the removal efficiency on the continuous operation was similar in both bioreactors.