• Title/Summary/Keyword: MWNT-PSS

Search Result 5, Processing Time 0.023 seconds

Synthesis of transparent conductive film containing solution -deposited poly (3, 4-ethylenedioxythiophene) (PEDOT) and water soluble multi-walled carbon nanotubes

  • Tung, Tran Thanh;Kim, Won-Jung;Kim, Tae-Young;Lee, Bong-Seok;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.205-206
    • /
    • 2008
  • The transparent conductive film was prepared by bar coating method of poly (3, 4-ethylenedioxythiophene) (PEDOT) and poly (sodium 4-stylenesulfonate) grafted multi-walled carbon nanotubes (MWNT-PSS) nanocomposites solution on the polyethylene terephthalate (PET) film. In this case, multi-wall carbon nanotubes was treated by chemical methods to obtain water soluble MWNT-PSS and then blending with PEDOT. The non-covalent bonding of polymer to the MWNT surface was confirmed by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA) and Transmission electro microscope (TEM) investigation also showed a polymer-wrapped MWNT structure. Furthermore, the electrical, transmission properties of the transparent conductive film were investigated and compared with control samples are raw PEDOT films.

  • PDF

Liquid Crystal Driving of Transparent Electrode-Alignment Layer Multifunctional Thin Film by Nano-Wrinkle Imprinting of PEDOT:PSS/MWNT Nanocomposite (PEDOT:PSS/MWNT 나노복합체의 나노주름 임프린팅을 통한 투명전극-배향막 복합 기능 박막의 액정 구동)

  • Jong In Jang;Hae-Chang Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • In conventional liquid crystal display(LCD) manufacturing process, Indium Tin Oxide(ITO) as transparent electrode and rubbing process of polyimide as alignment layer are essential process to apply electric field and align liquid crystal molecules. However, there are some limits that deposition of ITO requires high vacuum state, and rubbing process might damage the device with tribolectric discharge. In this paper, we made nanocomposite with PEDOT:PSS and MWNT to replace ITO and constructed alignment layer by nano imprint lithography with nano wrinkle pattern, to replace rubbing process. These replacement made that only one PEDOT:PSS/MWNT film can function as two layers of ITO and polyimide alignment layer, which means simplification of process. Transferred nano wrinkle patterns functioned well as alignment layer, and we found out lowered threshold voltage and shortened response time as MWNT content increase, which is related to increment of electric conductivity of the film. Through this study, it may able to contribute to process simplification, reducing process cost, and suggesting a solution to disadvantage of rubbing process.

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.

Characterization of Au-MWNT nanocomposite in thin films (다중벽 탄소나노튜브와 금나노입자를 사용한 나노박막의 특성연구)

  • Kim, Jung-Soo;Bae, Jong-Seong;Ko, Chang-Hyun;Oh, Won-Tea
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.49-49
    • /
    • 2009
  • Nanocomposites of gold nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared by electrostatic interaction. Gold nanopartic1es were stabilized by polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and poly(sodium-4-styrenesulfonate) (PSS) in aqueous medium, and MWNTs were modified by poly(diallyldimethylammonium)chloride (PDDA) in water. The as-perpared Au-MWNT nanocomposites were structurally and electrically characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclo voltammetry (CV). UV/Vis spectra of Au-MWNT nanocomposites showed the characteristic surface plasmon bands in the range of ~515nm, depending on the stabilizers. There is only slight change on the band shape with variation of stabilizing agents for gold nanoparticles. Through FE-SEM and TEM images, the distribution of gold, nanoparticles on the sidewalls of MWNTs was deliberately investigated on Au-MWNT nanocomposites treated with different stabilizers. XPS and CV showed redistribution of electron densities and changes in the binding energy states of nanopartic1es in nanocomposite respectively.

  • PDF

Preparation and characterization of some metal-carbon nanotube composites (금속-탄소나노튜브 복합재료에 대한 특성연구)

  • Oh, Weon-Tae;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.61-61
    • /
    • 2008
  • Nanocomposites of metal (gold and silver) nanoparticles and multi-walled carbon nanotubes (MWNTs) were prepared with the assistance of various stabilizers for metals and MWNTs. Especially common surfactants such as poly(4-vinylpyridine) (PVP), sodium dodecyl sulfate (SDS), poly(sodium 4-styrene sulfonate) (PSS), and poly(diallyldimethylammonium) chloride (PDDA) were used for the sample preparation. Metal/MWNT nanocomposites were structurally characterized in by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), UV/Vis spectroscopy. In addition, the electrical properties of the nanocomposites were studied by cyclic voltammetry (CV).

  • PDF