• Title/Summary/Keyword: MVS 혼방사

Search Result 4, Processing Time 0.019 seconds

Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio (PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성)

  • Sa, A-Na;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.

Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure - (고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 -)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II) (PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II))

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.