• Title/Summary/Keyword: MVA

Search Result 330, Processing Time 0.02 seconds

Interaction and Transient Analysis to FACTS Devices in Seoul Area (수도권 FACTS 상호영향 및 과도특성 분석)

  • Yoon, Jong-Su;Kim, Jae-Han;Lee, Seong-Doo;Choi, Jang-Hum;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1929-1935
    • /
    • 2010
  • This paper describes the operation effect of FACTS devices in the Korean power system. At the year of 2010, three FACTS devices is under commercial operation in the Seoul area. Among them, 345kV ${\pm}100MVA$ STATCOM at Mi-Geum substation and 345kV ${\pm}200MVA$ SVC at Dong-Seoul substation are very close at their electrical and geographical distance. Therefore, the additional analysis including interaction and mutual transient is necessary. Therefore, a detailed EMTDC/PSCAD simulation model was developed and steady-state/transient analysis was implemented.

A Surge Voltage Distribution Analysis of 2MVA Cast Resin Transformer Winding with FEM Simulation (FEM 시뮬레이션을 이용한 2MVA 몰드변압기 권선간 써지전압 분배 해석 기법 연구)

  • Jang, Hyeong-Taek;Shin, Pan-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.15-21
    • /
    • 2011
  • This paper presents an analyzing method of the capacitance of the power transformer for initial voltage distribution and insulation design. When a high incoming surge voltage is accidently occurred in windings of transformer, it does not distribute equally in the windings. This phenomenon makes electric field concentration and the insulating material could be break. Initial voltage distribute mostly depends on capacitances between winding to winding or winding to core in the transformer. If the C network can be structuralized into the equivalent circuit model and be calculated each capacitance element value by circuit analysis and FEM(Finite Element Method) simulation program, the transformer designer could know the place where the structure is to be modified or the insulation to be reinforced. This method quickly provides the data of the voltage distribution in each winding to the designer.

Hybrid Generation Simulation Model Development Composed of Wave-Offshore and Wind (풍력 및 파력발전으로 구성된 복합발전 시뮬레이션 모델 개발)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Kim, Kyo-Min;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.115-116
    • /
    • 2015
  • 본 논문에서는 PSCAD/EMTDC 소프트웨어를 이용하여 3MVA 용량의 풍력발전기와 2.4MVA 용량의 파력발전기로 구성되어 있는 부유식 파력-해상풍력 연계형 발전시스템 모델을 모의 할 예정이다. 각각의 발전시스템은 발전기, 발전기 컨버터, 전력망 컨버터, 전력망으로 구성되어 있고 시뮬레이션 결과를 통해 각각의 풍력 및 파력발전기에서 전력망의 유효전력과 무효전력을 완전히 독립적으로 제어 할 수 있음에 대하여 살펴 볼 것이다.

  • PDF

The Application and Experimental Verification of 2MVA BESS for Power Smoothing of Wind Turbine (풍력발전 출력 안정화를 위한 2MVA급 BESS 적용 및 실증시험)

  • Kim, Yun-Hyun;In, Dong-Seok;Kim, Sang-Hyun;Kim, Tae-Hyeong;Kim, Kwang-Seob;Kwon, Byung-Ki;Lee, Duk-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.540-541
    • /
    • 2012
  • 본 논문에서는 신재생에너지원인 1.5MW 풍력발전기가 연계된 계통에 2MVA/500kWh BESS(Battery Energy Storage System)를 적용하여 실증시험을 수행한 결과를 기술하였다. 풍력발전기의 출력 전력을 측정하여 제어 알고리즘에 따라 충, 방전 지령값을 계산하는 상위제어기 EMS와 BESS를 연동하여 운전하였다. 이를 통해 BESS를 이용하여 풍력발전기의 출력이 심하게 변동하여도 계통으로 송전되는 전력을 안정적으로 제어할 수 있음을 검증하였다.

  • PDF

Development of Vector Controlled Traction System (벡터제어를 이용한 전동차 구동 시스템)

  • 배본호;설승기;김상훈;이일호;한성수
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.288-295
    • /
    • 1999
  • This paper presents an application of vector control strategy for 1.2MVA IGBT traction drive for electric railway vehicle. The vector control requires the control of the phase and amplitude of output voltage vector[5]. But in case of traction system far railway vehicle, the one-pulse mode is used in order to utilize the link voltage fully[8]. So it is impossible to control the flux axis current and the torque axis current instantaneously and independently. So this paper proposes the vector control strategy with slip-frequency control at one-pulse mode. And precise switching technique between the two different control structures has been proposed. And the strategy was verified by experimental result with 1.2MVA IGBT inverter with four 210㎾ induction motors.

  • PDF

The propulsive plan on the standardization in 22.9kV, 50MVA HTS power cable (22.9kV, 50MVA급 초전도 전력케이블의 표준화 추진 방안)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.48-51
    • /
    • 2008
  • The standardization on superconducting application techniques has been focused only in testing method or material itself, but, recently, it is actively proceeded by superconducting technical committee(TC) of international electro technical commission(IEC). In this paper, the standardization organization and its necessary process is introduced and the standardization technique for 22.9kV, 50MVA HTS power cable is prescribed. Throughout this research, it is possible to take priorities on the standardization technique in HTS power cable application. And moreover it can also contributes to the commercialization of HTS power cable.

The study on the DC Ic measurement in the 22.9kV, 50MVA HTS power cable (22.9kV, 50MVA급 초전도 전력케이블 DC $I_c$ 측정에 관한 연구)

  • Choi, S.J.;Lee, S.J.;Sim, K.D.;Cho, J.W.;Jang, H.M.;Lee, S.K.;Sohn, S.H.;Hwang, S.D.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.28-31
    • /
    • 2008
  • 22.9kV 50MVA HTS power cable has been developed and tested by Korea Electrotechnology Research Institute and LS Cable Company and it was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program. In this paper, DC Ic of 100m HTS cable which is installed at Kochang testing station was measured and analyzed. A measurement technique of DC Ic used by resistance and inductance removal method is established.