• Title/Summary/Keyword: MUC5AC protein, human

Search Result 23, Processing Time 0.021 seconds

Effects of Nodakenin, Columbianadin, and Umbelliferone Isolated from the Roots of Angelica decursiva on the Gene Expression and Production of MUC5AC Mucin from Human Airway Epithelial NCI-H292 Cells

  • Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • Angelica decursiva has been utilised as remedy for controlling the airway inflammatory diseases in folk medicine. We investigated whether nodakenin, columbianadin, and umbelliferone isolated from the roots of Angelica decursiva inhibit the gene expression and production of MUC5AC mucin from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with nodakenin, columbianadin or umbelliferone for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) for 24 h. The MUC5AC mucin gene expression was measured by reverse transcription - polymerase chain reaction (RT-PCR). Production of MUC5AC mucin protein was measured by enzyme-linked immunosorbent assay (ELISA). The results were as follows: (1) Nodakenin did not affect the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the expression of MUC5AC mucin gene induced by EGF or PMA. However, umbelliferone inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$; (2) Nodakenin also did not affect the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the production of MUC5AC mucin protein induced by PMA. However, umbelliferone inhibited the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. These results suggest that, among the three compounds investigated, umbelliferone only inhibits the gene expression and production of MUC5AC mucin stimulated by various inducers, by directly acting on airway epithelial cells, and the results might explain the traditional use of Angelica decursiva as remedy for diverse inflammatory pulmonary diseases.

Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

  • Poachanukoon, Orapan;Koontongkaew, Sittichai;Monthanapisut, Paopanga;Pattanacharoenchai, Napaporn
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods: Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)-induction of mucin and TNF-${\alpha}$ in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1-500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone ($1{\mu}g/mL$) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-${\alpha}$ in culture supernatants were measured using enzyme-linked immunosorbent assay. Results: MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-${\alpha}$. Conclusion: Our findings demonstrated that MF and BUD attenuated mucin and TNF-${\alpha}$ production in PMA-induced human airway epithelial cells.

Effect of Platycodin D on Airway MUC5AC Mucin Production and Gene Expression Induced by Growth Factor and Proinflammatory Factor

  • Lee, Hyun-Jae;Lee, Su-Yel;Jeon, Byeong-Kyou;Lee, Jae-Woo;Kim, Young-Sik;Lee, Mi-Nam;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.294-299
    • /
    • 2010
  • In this study, we tried to investigate whether platycodin D significantly affects MUC5AC mucin production and gene expression induced by epidermal growth factor (EGF), phorbol ester (PMA) and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of platycodin D for 30 min and then stimulated with EGF, PMA and TNF-$\alpha$ for 24h, respectively. MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) Platycodin D was found to inhibit the production of MUC5AC mucin protein induced by EGF, PMA, and TNF-$\alpha$, respectively. (2) It also inhibited the expression of MUC5AC mucin gene induced by the same inducers. These results suggest that platycodin D can regulate mucin gene expression and production of mucin protein, by directly acting on human airway epithelial cells.

Regulation of Tumor Necrosis Factor-${\alpha}$-induced Airway Mucin Production and Gene Expression by Carbenoxolone, Prunetin, and Silibinin

  • Lee, Hyun-Jae;Lee, Su-Yel;Jeon, Byeong-Kyou;Lee, Jae-Woo;Lee, Mi-Nam;Kim, Ju-Ock;Lee, Choong-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.348-353
    • /
    • 2010
  • Background: In this study, we tried to investigate whether carbenoxolone, prunetin, and silibinin affect tumor necrosis factor (TNF)-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with each agent (carbenoxolone, prunetin, and silibinin) for 30 min and then stimulated with TNF-${\alpha}$ for 24 hours. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively. Results: Carbenoxolone, prunetin and silibinin inhibited the production of MUC5AC mucin protein induced by TNF-${\alpha}$; the 3 compounds also inhibited the expression of MUC5AC mucin gene induced by TNF-${\alpha}$. Conclusion: This result suggests that carbenoxolone, prunetin and silibinin can inhibit mucin gene expression and production of mucin protein induced by TNF-${\alpha}$, by directly acting on airway epithelial cells.

Effects of Baicalin, Baicalein and Schizandrin on Airway Mucin Production Induced by Epidermal Growth Factor and Phorbol Ester

  • Lee, Hyun-Jae;Lee, Su-Yel;Kim, Young-Sik;Jeon, Byeong-Kyou;Lee, Jae-Woo;Bae, Heung-Seog;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.396-401
    • /
    • 2010
  • We conducted this study to investigate whether baicalin, baicalein or schizandrin significantly affect MUC5AC mucin production induced by epidermal growth factor (EGF) or phorbol ester (PMA) in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of baicalin, baicalein or schizandrin for 30 min and then stimulated with EGF or PMA for 24 h, respectively. MUC5AC mucin protein production was measured by ELISA. The results were as follows: (1) Baicalin was found to inhibit the production of MUC5AC mucin protein induced by both EGF and PMA. (2) Baicalein, the aglycone of baicalin, also inhibited MUC5AC mucin production. (3) Schizandrin, derived from Schizandrae Fructus, inhibited MUC5AC mucin production by the same inducers. These results suggest that baicalin, baicalein and schizandrin can regulate the production of mucin protein by directly acting on human airway epithelial cells.

Effect of Berberine on MUC5AC Mucin Gene Expression and Mucin Production from Human Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun-Jae;Lee, Su-Yel;Bae, Heung-Seog;Kim, Jang-Hyun;Chang, Gyu-Tae;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.320-323
    • /
    • 2011
  • We conducted this study to investigate whether berberine signifi cantly affects MUC5AC mucin gene expression and mucin production induced by epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) from human airway epithelial cells. Confl uent NCI-H292 cells were pretreated with varying concentrations of berberine for 30 min and then stimulated with EGF, PMA or TNF-${\alpha}$ for 24 h. MUC5AC mucin gene expression and mucin production were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Berberine was found to inhibit the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$. Berberine also inhibited the production of MUC5AC mucin protein stimulated by the same inducers. This result suggests that berberine can regulate the expression of mucin gene and production of mucin protein, by directly acting on human airway epithelial cells.

Effects of Lobetyolin, Lobetyol and Methyl linoleate on Secretion, Production and Gene Expression of MUC5AC Mucin from Airway Epithelial Cells

  • Yoon, Yong Pill;Ryu, Jiho;Park, Su Hyun;Lee, Hyun Jae;Lee, Seungho;Lee, Sang Kook;Kim, Ju-Ock;Hong, Jang-Hee;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.5
    • /
    • pp.203-208
    • /
    • 2014
  • Background: In this study, we investigated whether lobetyolin, lobetyol, and methyl linoleate derived from Codonopsis pilosula affect MUC5AC mucin secretion, production, and gene expression from airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with lobetyolin, lobetyol, or methyl linoleate for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin gene expression, and mucin protein production and secretion were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: Lobetyolin, lobetyol, and methyl linoleate inhibited the gene expression of MUC5AC mucin induced by PMA; lobetyolin did not affect PMA-induced MUC5AC mucin production. However, lobetyol and methyl linoleate inhibited the production of MUC5AC mucin; lobetyolin and lobetyol did not significantly affect PMA-induced MUC5AC mucin secretion from NCI-H292 cells. However, methyl linoleate decreased the MUC5AC mucin secretion. Conclusion: These results suggest that among the three compounds, methyl linoleate can regulate gene expression, production, and secretion of MUC5AC mucin by directly acting on the airway epithelial cells.

Eupatilin downregulates phorbol 12-myristate 13-acetate-induced MUC5AC expression via inhibition of p38/ERK/JNK MAPKs signal pathway in human airway epithelial cells

  • Cheon, Yoon-Hee;Kim, Min Seob;Kim, Ju-Young;Kim, Dong Hyun;Han, Seung Yoon;Lee, Jae-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.

Triptolide Inhibits Lipopolysaccharide-Induced MUC5AC/5B Expression via Nuclear Factor-Kappa B in Human Airway Epithelial Cells (사람 호흡기 상피세포에서 Triptolide의 Nuclear Factor-Kappa B를 통한 Lipopolysaccharide로 유도된 MUC5AC/5B 발현 억제 효과)

  • Seo, Bo Hyeon;Choi, Tae Yeong;Choi, Yoon Seok;Bae, Chang Hoon;Na, Hyung Gyun;Song, Si-Youn;Kim, Yong-Dae
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.61 no.12
    • /
    • pp.674-680
    • /
    • 2018
  • Background and Objectives The representative mucin genes in the human airway are MUC5AC and MUC5B, which are regulated by several inflammatory and anti-inflammatory substances. Triptolide (TPL), udenafil, betulinic acid, changkil saponin, and glucosteroid are some of the many anti-inflammatory substances that exist. TPL is a diterpenoid compound from the thunder god vine, which is used in traditional Chinese medicine for treatment of immune inflammatory diseases, such as rheumatoid arthritis, systemic lupus erythematosus, nephritis and asthma. However, the effects of TPL on mucin expression of human airway epithelial cells have yet to be reported. Hence, this study investigated the effect of TPL on lipopolysaccharide (LPS)-induced MUC5AC and MUC5B expression in human airway epithelial cells. Subjects and Method The NCI-H292 cells and the primary cultures of human nasal epithelial cells were used to investigate the effects of TPL on LPS-induced MUC5AC and MUC5B expression using real-time polymerase chain reaction, enzyme immunoassay, and Western blot. Results TPL significantly decreased the LPS-induced MUC5AC and MUC5B mRNA expression and protein production. TPL also significantly decreased the nuclear factor-kappa B (NF-kB) phosphorylation. Conclusion These results suggest that TPL down regulates MUC5AC and MUC5B expression via inhibition of NF-kB activation in human airway epithelial cells. This study may provide important information about the biological role of triptolide on mucus-secretion in airway inflammatory diseases and the development of novel therapeutic agents for controlling such diseases.

Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.303-310
    • /
    • 2021
  • In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.