The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.1
/
pp.55-64
/
2004
Conventional bipolar surface electromyography(EMG) technique detects only the superimposed electromyographic activity of a large number of motor units due to its low spatial resolution. For the diagnosis of neuromuscular disorder, the information of single MU is required. In this paper, 9 channel array surface electrode system was as designed and MLoG filter was proposed. Also the MCPT(modified convolution processing technique)method was proposed for the improvement of MUAP resolution. For performance evaluation, power spectrum analysis of random data and raw EMG signal comparison of MUAP shape and quantitative estimation of SNR were executed. As a result, the MUAP resolution improvement of 32% was obtained from the standpoint of the signal-to-noise ratio(SNR).
Park, S.H.;Lee, Y.W.;Go, H.W.;Ye, S.Y.;Eom, S.H.;Nam, K.G.;Jun, K.R.
Proceedings of the KOSOMBE Conference
/
v.1997
no.11
/
pp.55-58
/
1997
In this paper, we study a signal processing method which extracts each MUAP(motor unit action potential) from EMG(Electromyogram) interference pattern or clinical diagnostic purposes. First of all, differential digital filtering is selected or eliminating the spike components of the MUAP's from the background noise. And, the algorithm identifies the spikes over the certanin threshold by template matching in frequency domain. After missing or false firing actor is cut off at the IPI(inter pulse interval) histogram, we averages the MUAP waveforms from the raw signal using the identified spikes as triggers, and Finally, measures their amplitudes, durations, and numbers of phases. Specially, We introduce algorithm performed by template matching in the frequency domain. A typical 3-s signal recorded from the biceps brachii muscle using a conventional needle electrode during a isometric contraction is used. Finally, the method decomposed five simultaneous active MUAP's from original EMG signal.
Clinical myography(EMG) is a technique for diagnosing neuromuscular disorders by analyzing the electrical signal that can be records by needle electrode during a muscular contraction. The EMG signal arises from electrical discharges that accompany the generation of force by groups of muscular fiber, and the analysis of EMG signal provides symptoms that can distinguish disorder of mLecle from disor- ders of nerve. One of the methods for analysis of EMG signal is to separate the individual discharge-the motor unit action potentials(MVAPS) - from EMG signal. But we can only observe the EMG signal that is a superimposed version of time delayed MUAPS. To obtain the information about MUAP(, i.e., position, firing number, magnitude etc), first of all, a method that can separate each MUAP from the EMG signal must be developed Although the methods for MUAP separation have been proposed by many researcherl they have required heavy computational burden. In this paper, we proposed a new method that has less computational burden and performs more reliable separation of superimposed EMG signal using wavelet filter which has multiresolution analysis as major property. As a result, we develope the separation algorithm of superimposed EMG signal which has less computational burden than any other researchers and exacutes exact separation process. The performance of this method has been discussed in the automatic resolving procedure which is neccessary to identify every firing of every motor unit from the EMG pattern.
The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.10
/
pp.1951-1958
/
2011
The objective of this study is to analyze the performance of digital low-pass differentiators(LPD) and then to provide a method to select effective LPD filter, for detecting spikes of surface motor unit action potentials(MUAP). The successful spike detection of MUAPs is a first important step for EMG signal decomposition. The performances of simple and weighted LPD(SLPD and WLPD) filters are analyzed based on different filter lengths and varying MUAPs from simulated surface EMG signals. The SNR improving coefficient and effective MUAP duration range from the analysis results can be used to select proper LPD filters under the varying conditions of surface EMG.
Ha, Ryun;Kim, Dong Young;Kim, Dong Hyun;Woo, Joo Hyun
Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
/
v.30
no.1
/
pp.28-33
/
2019
Background and Objectives : Laryngeal electromyography (LEMG) is valuable to evaluate the innervation status of the laryngeal muscles and the prognosis of vocal fold paralysis (VFP). However, there is a lack of agreement on quantitative interpretation of LEMG. The aim of this study is to measure the motor unit action potentials (MUAP) quantitatively in order to find cut-off values of amplitude, duration, phase for unilateral vocal fold paralysis patients. Materials and Method : Retrospective chart review was performed for the unilateral VFP patients who underwent LEMG from March 2016 to May 2018. Patient's demography, cause of VFP, vocal cord mobility, and LEMG finding were analyzed. The difference between normal and paralyzed vocal folds and cut-off values of duration, amplitude, and phase in MUAP were evaluated. Results : Thirty-six patients were enrolled in this study. Paralyzed vocal fold had significantly longer duration (p=0.021), lower amplitude (p=0.000), and smaller phase (p=0.012) than the normal. The cut-off values of duration, amplitude, and phase in MUAP for unilateral VFP were 5.15 ms, $68.35{\mu}V$, and 1.85 respectively. Conclusion : An analysis of MUAP successfully provided quantitative differences between normal and paralyzed vocal folds. But, additional research is needed to get more available cut-off value which is helpful to evaluate the status of laryngeal innervations.
The Transactions of The Korean Institute of Electrical Engineers
/
v.62
no.7
/
pp.1014-1019
/
2013
Signal processing techniques based on fractional order calculus have been successfully applied in analyzing heavy-tailed non-Gaussian signals. It was found that the surface EMG signals from the muscles having nuero-muscular disease are best modeled by using the heavy-tailed non-gaussian random processes. In this regard, this paper describes an application of digital fractional order lowpass differentiators(FOLPD, weighted FOLPD) based on the fractional order calculus in detecting peaks of surface EMG signal. The performances of the FOLPD and WFOLPD are analyzed based on different filter length and varying MUAP wave shape from recorded and simulated surface EMG signals. As a results, the WFOLPD showed better SNR improving factors than the existing WLPD and to be more robust under the various surface EMG signals.
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.3
/
pp.632-640
/
2007
The low force estimation method of skeletal muscle was proposed by using ICA(independent component analysis) and neuro-transmission model. An EMG decomposition is the procedure by which the signal is classified into its constituent MUAP(motor unit action potential). The force index of electromyography was due to the generation of MUAP. To estimate low force, current analysis technique, such as RMS(root mean square) and MAV(mean absolute value), have not been shown to provide direct measures of the number and timing of motoneurons firing or their firing frequencies, but are used due to lack of other options. In this paper, the method based on ICA and chemical signal transmission mechanism from neuron to muscle was proposed. The force generation model consists of two linear, first-order low pass filters separated by a static non-linearity. The model takes a modulated IPI(inter pulse interval) as input and produces isometric force as output. Both the step and random train were applied to the neuro-transmission model. As a results, the ICA has shown remarkable enhancement by finding a hidden MAUP from the original superimposed EMG signal and estimating accurate IPI. And the proposed estimation technique shows good agreements with the low force measured comparing with RMS and MAV method to the input patterns.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.7
no.1
/
pp.79-86
/
2003
A myoelectric signal, under sustained isometric contraction of muscle the modelled as the output of a linear time-varying system whose input is constant number of pulse train. The proposed model considered localized muscle fatigue by metabolic by-products during sustained fatiguing contraction. To characterize muscle fatiguing model of myoelectric signal, We calculated median frequency of generated signal as fatiguing index of muscle during sustained isometric contraction.
Park, Jung-Ho;Lee, Ho-Yong;Jung, Chul-Ki;Lee, Jin;Kim, Sung-Hwan
Journal of the Institute of Electronics Engineers of Korea SC
/
v.47
no.3
/
pp.28-39
/
2010
In this paper, a new method to estimate MU (motor unit) location in the short head of BIC (biceps brachii) muscle using surface EMG (electromyogram) is proposed. The SMUAP (single motor unit action potential) is generated from a MU located at certain depth from the skin surface. The depth is referred as MU location. For estimating muscle force precisely, the information of the MU location is required. The reference SMUAPs are simulated based on anatomical structure of human muscle, and compared with acquired real EMG signals using 3-channel surface EMG electrode. The proposed method was compared with the results of previous researchers and verified its accuracy by computer simulation. From the simulation result in case of the MU located in 8[mm], the average estimation error of proposed method was 0.01[mm]. But the average estimation error of Roeleveld's method was 2.33[mm] and Akazawa's method was 1.70[mm]. Therefore the proposed method was more accurate than the methods of previous researchers.
Background: Needle electromyography (EMG) and motor evoked potential (MEP) of the genioglossus (tongue) are difficult to perform in evaluations of the craniobulbar region in amyotrophic lateral sclerosis (ALS). Therefore, we investigated the yields of needle EMG and MEP recorded from the upper trapezius, since it receives innervation from the lower medulla and upper cervical cord. Methods: Needle EMG and MEP of the upper trapezius were obtained in 17 consecutive ALS patients. The needle EMG parameters recorded included abnormal spontaneous activity and motor unit action potential (MUAP) morphology. An upper motor neuron (UMN) lesion was presumed when either response to cortical stimulation was absent, or the central conduction time was delayed (>mean+2SD). Results: Of the five patients with bulbar-onset ALS, four had abnormalities in the upper trapezius and four in the tongue by needle EMG. In contrast, of the 12 patients with limb-onset ALS, 11 had abnormalities in the upper trapezius, and only five in the tongue. When MEP was performed, it was found that three of the five patients with bulbar symptoms and three of the six patients with isolated limb involvement had abnormal MEP findings. Conclusions: Electrophysiological studies of the upper trapezius are more sensitive those of the tongue in patients without bulbar symptoms. Thus, needle EMG and MEP of the upper trapezius are alternative tools for assessing bulbar and rostral neuraxial involvement in the diagnosis of ALS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.