• Title/Summary/Keyword: MTN

Search Result 15, Processing Time 0.018 seconds

Research Trend in Ultra-Low Latency Networking for Fourth Industrial Revolution (제4차 산업혁명 시대를 위한 초저지연 네트워킹 기술 동향)

  • Kang, T.K.;Kang, Y.H.;Ryoo, Y.C.;Cheung, T.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.108-122
    • /
    • 2019
  • Ultra-low latency networking is a technology that reduces the end-to-end latency related to transport time-sensitive or mission-critical traffic in a network. As the proliferation of the fourth industrial revolution and 5G mobile communications continues, ultra-low latency networking is emerging as an essential technology for supporting various network applications (such as industrial control, tele-surgery, and unmanned vehicles). In this report, we introduce the ultra-low-latency networking technologies that are in progress, categorized by application area, and examine their up-to-date standard status.

Development of latent footwear impression on porous surfaces using DL-alanine solution and 1,2-indanedione solution (DL-alanine과 1,2-indanedione을 이용한 종이에 남은 족적의 증강)

  • Hong, Sungwook;Kim, Euna;Park, Miseon;Lee, Eunhye
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.303-311
    • /
    • 2017
  • A new method for obtaining the photoluminescence of footwear impression by using 1,2-indandione (1,2-IND) solution, which is a latent fingerprint-developing reagent, was studied. A binary complex of DL-alanine and 1,2-IND was prepared by spraying a DL-alanine solution and the 1,2-IND solution (an amino acid sensitive reagent) onto dry or wet origin footwear impression deposited on the surface of printed A4 paper. This binary complex reacts with the trace metal component in the footwear impression to form a ternary complex that exhibits photoluminescence. However, when 5-methylthioninhydrin (5-MTN) solution was used instead of 1,2-IND, no consistent photoluminescence was observed even under identical treatment conditions. In addition, when footwear impressions treated with DL-alanine and 1,2-IND solutions were stored under various temperature conditions (30, 40 and $50^{\circ}C$) and various humidity conditions (30 %, 40 %, 50 % and 60 % RH), the contrast between the footwear impression and the background decreased. Optimal footwear impression photoluminescence was obtained when the footwear impressions treated with DL-alanine and 1,2-IND solutions were stored at $30^{\circ}C$ and 30 % RH for 1 h. The sensitivity of the developed method was ccompared with the sensitivities of three known methods - black gelatin lifting, 2,2'-dipyridyl treatment, and 8-hydroxyquinoline treatment. The results showed that the sensitivity of the developed method was worse than that of the black gelatin lifting method but better than that of 2,2'-dipyridyl or 8-hydroxyquinoline treatment method.

Photoalignment of Liquid Crystal on Silicon Microdisplay

  • Zhang, Baolong;Li, K. K.;Huang, H. C.;Chigrinov, V.;Kwok, H. S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.295-298
    • /
    • 2003
  • Reflective mode liquid crystal on silicon (LCoS) microdisplay is the major technology that can produce extremely high-resolution displays. A very large number of pixels can be packed onto the CMOS circuit with integrated drivers that can be projected to any size screen. Large size direct-view thin film transistor (TFT) LCDs becomes very difficult to make and to drive as the information content increases. However, the existing LC alignment technology for the LCoS cell fabrication is still the mechanical rubbing method, which is prone to have minor defects that are not visible normally but can be detrimental if projected to a large screen. In this paper, application of photo-alignment to LCoS fabrication is presented. The alignment is done by three-step exposure process. A MTN $90^{\circ}$ mode is chose as to evaluate the performance of this technique. The comparison with rubbing mode shows the performance of photo-alignment is comparable and even better in some aspect, such as sharper RVC curve and higher contrast ratio.

  • PDF

Purification and Characterization

  • Nam, Suk-Woo;Seo, Dong-Wan;Sung, Dae-Seok;Han, Jeung-Whan;Hong, Sung-Youl;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.128-134
    • /
    • 1998
  • Nitric oxide synthase, NOS (EC.1.14.13.39), was purified from bovine pancreas over 5,500-fold with a 7.6% yield using 30% ammonium sulfate precipitation, and $2^1$,$5^1$-ADP-agarose and calmodulin-agarose affinity chromatography. The purified bovine pancreatic NOS (bpNOS) showed a single band on SDS-PAGE corresponding to an apparent molecular mass of 160 kDa, whereas it was 320 kDa on non-denaturating gel-filtration. This indicated a homodimeric nature of the enzyme. The specific activity of the purified bpNOS was 31.67 nmol L-citrulline fored/mtn/mg protein and an apparent $K\textrm{m}$ for L-arginine was 15.72 $\mu\textrm{M}$, The enzyme activity was dependent on $Ca^{2+}$ and calmodulin, and to a lesser extent on NADPH, FAD and FMN. $H_4B$ was not required as a cofactor for the activity. In an inhibition experiment with L-arginine analogues, $N^G$-nitro-L-arginine (NNA) had the most potent inhibitory effect on bpNOS, and $N^{G}$, $N^{G1}$-dimethyl-L-arginine (symmetric; sDMA) did not have any inhibitory effect. Immunohistochemical analysis of the bovine pancreas using brain type NOS antibody (anti-bNOS antibody) revealed that acinar cells showed strong immunoreactivity against the antibody.

  • PDF

Properties of Disconitinuity for the Seoul Granite in the Northeastern Part of Seoul City (서울시 북동부의 서울화강암에 대한 불연속면의 특성)

  • 정상원;정상용
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.167-178
    • /
    • 2002
  • Properties of discontinuity for Seoul Granite in northeastern part of Seoul City were analyzed by dividing structural domains into Surak and Bulam Mtn. areas. Important parameters measured among several engineering properties of a rock during tunnel excavation and road construction are as follows: 1) Orientation of joint, 2) joint spacing, 3) joint density, and 4) uniaxial compressive strength. Orientation, spacing, and density of joints can be directly measured during field investigation using scanline survey, circle-inventory method, and window survey. Uniaxial compressive strength of the rock was calculated by a simple correlation equation although it is originally necessary to prepare core samples in measuring it. Major orientations of joints measured from both areas are 3 sets of joints with different orientations. In other words, they are 2 sets of orthogonal joint and 1 set of sheet joint that is dipping at low angle, and have very similar orientations in both areas. Joint densities in both areas range from 0.039 and 0.066/cm, and average joint length are between 1.30 and 4.52m. Average joint spacing also has values from 10.3cm up to 59.6cm, and shows significant difference along specific orientation of scanlines measured. Values of uniaxial compressive strength calculated on the basis of Schmidt hammer rebound values range from 217 to 335 MPa, which indicates very strong rock type by classification of wall strength.