• Title/Summary/Keyword: MTF1

Search Result 207, Processing Time 0.025 seconds

Contribution of Scattered X Rays to Signal Imaging with Anti-scatter Grids

  • Maeda, Koji;Arimura, Hidetaka;Morikawa, Kaoru;Kanamori, Hitoshi;Matsumoto, Masao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.404-406
    • /
    • 2002
  • We have investigated the contribution of the scattered x rays to the signal imaging in the radiographs acquired with anti-scatter grids of several grid ratios by separating the line spread functions (LSFs) derived from the signal edge image into the primary and the scatter components. By using a 1.0-mm lead plate in the scattering material, the blurred signal edge images were acquired by use of an imaging plate at a tube voltage of 80 kV with the anti-scatter grids of grid ratios for 5:1, 6:1, 8:1, 10:1 and 12:1. The edge profiles of the signal images were scanned and those in relative exposure were differentiated to obtain the LSFs. To investigate the contribution of the scattered x rays to the signal imaging, we proposed a method for separating the LSFs derived from the signal images into the primary and the scatter components, where the scatter component was approximated with exponential function. Our basic approach is to separate the area of the LSFs by ratios of the scattered x-ray exposure to the primary x-ray exposure, which were obtained for the grid ratios by use of a lead disk method. The LSFs and the two components were Fourier transformed to obtain the modulation transfer functions (MTFs) and their two components. As the result, we found that, by using the anti-scatter grids, the scattered x rays were reduced, but the shape of the LSFs of the scatter component hardly changed. The contributions of the scatter component to the MTFs were not negligible (more than 10 %) for spatial frequencies lower than about 1.0 mm$\^$-l/ and that was greater as the grid ratio decreasing. On the other hand, for higher frequencies, the primary component was dominant compared with the scatter component.

  • PDF

Dielectric Passivation and Geometry Effects on the Electromigration Characteristics in Al-1%Si Thin Film Interconnections

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2001
  • Dielectric passivation effects on the EM(electromigration) have been a great interest with recent ULSI and multilevel structure tends in thin film interconnections of a microelectronic device. SiO$_2$, PSG(phosphosilicate glass), and Si$_3$N$_4$ passivation materials effects on the EM resistance were investigated by utilizing widely used Al-1%Si thin film interconnections. A standard photolithography process was applied for the fabrication of 0.7㎛ thick 3㎛ wide, and 200㎛ ~1600㎛ long Al-1%Si EM test patterns. SiO$_2$, PSG, and Si$_3$N$_4$ dielectric passivation with the thickness of 300 nm were singly deposited onto the Al-1%Si thin film interconnections by using an APCVD(atmospheric pressure chemical vapor deposition) and a PECVD(plasma enhanced chemical vapor deposition) in order to investigate the passivation materials effects on the EM characteristics. EM tests were performed at the direct current densities of 3.2 $\times$ 10$\^$6/∼4.5 $\times$ 10$\^$6/ A/cm$^2$ and at the temperatures of 180 $\^{C}$, 210$\^{C}$, 240$\^{C}$, and 270$\^{C}$ for measuring the activation energies(Q) and for accelerated test conditions. Activation energies were calculated from the measured MTF(mean-time-to-failure) values. The calculated activation energies for the electromigration were 0.44 eV, 0.45 eV, and 0.50 eV, and 0.66 eV for the case of nonpassivated-, Si$_3$N$_4$passivated-, PSG passivated-, and SiO$_2$ passivated Al-1%Si thin film interconnections, respectively. Thus SiO$_2$ passivation showed the best characteristics on the EM resistance followed by the order of PSG, Si$_3$N$_4$ and nonpassivation. It is believed that the passivation sequences as well as the passivation materials also influence on the EM characteristics in multilevel passivation structures.

  • PDF

Dielectric Passivation Effects for the Prevention of the Failures and for the Improvement of the Reliability in Microelectronic Thin Film Interconnections (극미세 전자소자 박막배선의 결함방지 및 신뢰도 향상을 위한 절연보호막 효과)

  • 양인철;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.217-223
    • /
    • 1995
  • 절연보호막에 따른 AI-1%Si 박막배선의 평균수명(MTF, Mean-Time-to-Failure) 및 electromigration에 대한 저항성, 즉 활성화에너지(Q)변화 등을 측정 비교하였다. 박막배선은 $5000\AA$두께로 열산화막 처리된 p-Si(100)기판위에 $7000\AA$의 AI-1%Si을 증착한 후 photolithography 공정으로 형성시켰다. Electromigration test를 위한 박막배선은 $3\mu$m의 폭과 $400\mu$m, $1600\mu$m의 두 가지 길이를 가지며 절연보호막 효과를 알아보기 위해 그 위에 $3000\AA$의 두께로 SiO2, PSG, Si3N4등 절연보호막을 APCVD 및 PECVD를 이용하여 각각 증착시켰다. 가속화 실험을 위해 인가된 전류밀도는 4.5X106A/cm2이었고 180, 210, $240^{\circ}C$온도에서 d.c. 인가 후의 저항변화를 측정하여 평균수명을 구한 후 Black 방정식을 이용하여 활성화에너지를 측정하였다. AI-1%Si 박막배선에서 electromigration에 대한 활성화에너지값은 $400\mu$m길이의 경우 0.44eV(nonpassivated), 0.45eV(Si3N4 passivated), 0.50 eV(PSG passivated), 그리고 0.66 eV(SiO2 passivated)로 각각 측정되었다. $1600\mu$m 길이의 AI-1%Si 박막배선 실험에서도 같은 절연보호막 효과가 관찰되었다. 따라서 SiO2, PSG, Si3N4등 절연보호막은 AI-1%Si 박막배선에서의 electromigration에 대한 저항력을 높여 결함방지효과를 보이며 수명을 향상시킨다. SiO2의 절연보호막의 경우가 AI-1%Si 박막배선의 electromigration에 대한 가장 강한 저항력을 보이며 평균수명도 높게 나타났다.

  • PDF

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

A Study of Optical System Design for a Retinal Camera (망막 카메라용 광학계 설계)

  • Hong, Kyung-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • We need a good image of the retina of the human eye in order to inspect or cure it. In this work, an optical system design for a retinal camera is studied and the finite schematic eye model made by Sang Gee Kim and Sung Chan Park is used. The optical system is composed of four lens groups. The rays of the entire object field are collected on the center by the 1st group and the objective is imaged by all the other groups. The image is detected by the CCD array and displayed by a monitor The 1st lens group is employed singlet and other groups are employed triplets. Ray aberrations, spot diagrams, diffraction line spread functions and MTFs are calculated for optical performance assessment. This design may be very useful for the development of a retinal camera with high performance.

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

Study on dose and image quality by Added filter and Grid change when exam abdominal fluoroscopy (복부투시조영 검사 시 Added filter와 Grid 변화에 따른 선량 및 화질에 관한 연구)

  • Hong, Seon Sook;Kang, Kyeong Mi;Seong, Min Suk;Lee, Jong Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.47-56
    • /
    • 2012
  • Amount of radiation exposure by seeing through fluoroscopy examination while is many patient exposure administration and unprepared misgovernment be. In this study, abdominal fluoroscopy during the scan, the dose and image quality change according to the use of grid and added filter optimized by measuring the test condition is proposed. Uses seeing through fluoroscopy examination equipment of Image Intensifier of Easy Diagnost Eleva (Philips), under tube type and uses Human phantom and measures average area dose according to grid insertion existence and nonexistence and added filter kind change. Measure sum of 29 organ dose and effective dose through PCXMC imagination simulation program and image J program through noise, SNR, image distortion was measured. Resolution, sharpness, and analyzed using the MTF curves. Fluorography the grid to insert the filter thickness and thickening and increased the average area dose and organ doses and effective dose. In the case of spot examination, when inserted grid, average area dose and organ dose and effective dose increased. Filter thickens the average area dose decreased, but the organ doses and effective dose were increased when use 0.2mmCu+1mmAl filter, decreased slightly. Noise and SNR measurements without inserting the gird, if you do not use the added filter was the lowest and when measure the distortion, 0.1mmCu+1mmAl filter was no difference of image quality in case insert grid was judged that when did not use occasion added filter that do not use grid, difference of image quality does not exist. Did not show a big difference, according to the grid and uses of the added filter sharpness, and resolution. Patient dose increases with factors that reduce the quality of the image so reckless grid and the use of the added filter when abdominal fluoroscopy examination should be cautious in using.

  • PDF

Radiography with Low Energy Protons Generated from Ultraintense Laser-plasma Interactions

  • Choi, Chang-Il;Lee, Dong-Hoon;Kang, Byoung-Hwi;Kim, Yong-Kyun;Choi, Il-Woo;Sung, Jae-Hee;Kim, Chul-Min;Kim, I-Jong;Yu, Tae-Jun;Lee, Seong-Ku;Pae, Ki-Hong;Hafz, Nasr;Jeong, Tae-Moon;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • In order to obtain high quality images of thin objects, we performed an experiment of proton radiography by using low energy protons generated from the interaction of an ultrashort ultraintense laser with solid targets. The protons were produced from a thin polyimide target irradiated by the laser pulse, and their maximum energy was estimated at up to 1.8 MeV. A CR-39 nuclear track detector was used as a proton radiography screen. The proton images were obtained by using an optical microscope and the spatial resolution was evaluated by a Modulation Transfer Function (MTF). We have achieved about $10\;{\mu}m$ spatial resolution of images. The obtained spatial resolution shows about $4{\sim}5$ times better value than the conventional X-ray radiography for inspection or non-destructive test (NDT) purpose.

Tolerance Analysis of Focus-adjustable Head-mounted Displays

  • Choi, Hojong;Ryu, Jae Myung;Kim, Jin Ha
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.474-490
    • /
    • 2017
  • Since the recent slowdown in the smartphone market, studies for wearable devices are briskly being carried out to find new markets, such as virtual reality devices. In this paper, a head-mounted display (HMD) which provides expanded virtual images before human eyes by enlarging images of a small display was designed, and the tolerance analysis method for a focus-adjustable HMD based on afocal optical systems was studied. There are two types of HMDs: a see-through type that allows the user to view the surroundings, and a see-close type where the user can only view the display screen; the former is used in this study. While designing the system, we allowed a lens within the system to be shifted to adjust its focus from +1 to -4 D (diopters). The yield of the designed systems was calculated by taking the worst-case scenario of a uniform distribution into account. Additionally, a longitudinal aberration was used rather than MTF for the tolerance analysis with respect to system performance. The sensitivity of the designed system was calculated by assigning a certain tolerance, and the focus lens shift was calculated to adjust the image surface variations resulting from the tolerance. The smaller the tolerance, the more expensive the unit price of the products. Very small tolerances may even be impossible to fabricate. Considering this, the appropriate tolerance was assigned; the maximum shift of the focus lens in which the image surface can be adjusted was obtained to find the changes in aberration and a good yield.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.