• Title/Summary/Keyword: MTBE 이용 균주

Search Result 4, Processing Time 0.018 seconds

Characterization of MTBE (Methyl Tertiary Butyl Ether) Utilizing Bacteria from the Gasoline Contaminated Soils (유류오염토양에서 분리된 MTBE(Methyl Tertiary Butyl Ether) 이용 균주의 MTBE 분해특성)

  • An, Sangwoo;Lee, Sijin;Park, Jaewoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.43-50
    • /
    • 2010
  • In this study, we have isolated MTBE utilizing bacteria at the gasoline contaminated soil and also MTBE degradation patterns were characterized. The 18 bacterial mono-cultures isolated from enrichment cultures were screened for MTBE degradation. Of the 18 strains, the 3 strains (Flavobacterium, Pseudomonas, and Achromobacter) have shown effective MTBE degradation. Experimental parameters affecting the growth conditions (such as temperature, pH, initial cell mass) were optimized. Experimental parameters such as temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in optimal growth conditions for MTBE degradation. The optimal growth conditions of the isolated stains were temperature $30^{\circ}C$, pH 7, and initial cell mass 0.6 g/mL in our experiment, respectively. The first order degradation coefficients of Achromobacter, Mixed culture, Pseudomonas, and Flavobacterium were 0.072, 0.066, 0.047, and $0.032hr^{-1}$, respectively. and also, it could be expressed as a degradation rate considering cell mass (1.302, 1.019, 0.523, and 0.352 mg/TSS g/hr for each microorganism). Although Achromobacter has shown highest MTBE degradation rate, degradation rate for BTEX was relatively lower than other strains. and Mixed culture and Flavobacterium have shown similar degradation pattern for MTBE and BTEX biodegradation.

Biodegradation Study of Gasoline Oxygenates by Butane-Utilizing Microorganisms (부탄 분해 미생물을 이용한 휘발유 첨가제의 분해특성)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • In this study, potential degradation of MTBE and other gasoline oxygenates by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using butane as the sources of carbon and energy was examined and compared. Butane monooxygenases(BMO) of butane-grown ENV425 and mixed culture generated 1-butanol as a major metabolite of butane oxidation and addition of acetylene, specific inhibitor of monooxygenase, inhibited both butane oxidation and 1-butanol production. The results described in this study suggest that alkanes including propane, pentane, and butane are effectively utilized as a growth substrate to oxidize MTBE cometabolically. And also BTEX compounds could be the potential substrate of the MTBE cometabolism. Cell density also affected on the MTBE degradation and transformation capacity(Tc). Increasing cell density caused increasing MTBE degradation but decreased transformation capacity. Other result demonstrated that MTBE and other gasoline oxygenates, ETBE and TAME, were degraded by butane-grown microorganism.

Biodegradation of Gasoline Oxygenate MTBE(Methyl tert-Butyl Ether) by Butane-Utilizing Bacteria (부탄분해미생물에 의한 가솔린첨가제 MTBE(Methyl tert-Butyl Ether) 분해)

  • 장순웅;백승식;이시진
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.31-41
    • /
    • 2001
  • In this study, we have examined the potential degradation of MTBE(methyl tert-butyl ether) by pure culture ENV425 and mixed culture obtained from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown on n-butane. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane monooxygenase. These cultures grown on n-butane generated TBA (tert-butyl alcohol) as a metabolite of MTBE oxidation. TBA Production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. In resting cell experiments, however, TBA and TBF were detected as the oxidation products of MTBE by ENV425 and mixed culture. The observed maximal MTBE degradation rates were 52.3 and 62.3 (nmol MTBE degraded/hr/mg TSS) by ENV425 and mixed culture, respectively, and the observed maximal transformation yields ($T_y$) were 44.7 and 34.0 (nmol MTBE degraded/$\mu$mol n-butane utilized), and the observed maximal transformation capacities ($T_c$) were 199 and 226 ($\mu$mol MTBE degraded/mg TSS used).

  • PDF

Biodegradation of Gasoline Contaminated Soils under Denitrifying Conditions

  • Oh, In-Suk;Lee, Si-Jin;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-396
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor And nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study.

  • PDF