• 제목/요약/키워드: MSTAR

검색결과 9건 처리시간 0.019초

SAR 영상을 이용한 템플릿 매칭 기반 자동식별 알고리즘 구현 및 성능시험 (Template Matching-Based Target Recognition Algorithm Development and Verification using SAR Images)

  • 임호;채대영;유지희;권경일
    • 한국군사과학기술학회지
    • /
    • 제17권3호
    • /
    • pp.364-377
    • /
    • 2014
  • In this paper, we have developed a target recognition algorithm based on a template matching technique using Synthetic Aperture Radar (SAR) images. For efficient computations, Radon transform-based azimuth estimation algorithm was used with the template matching. MSTAR data set was divided into two groups according to the depression angles, which were a train set and a test set. Template data were generated by rotating and cropping chips which were from MSTAR train set using the azimuth estimation algorithm. Then the template matching process between test data and template data was performed under various conditions. Performance variation according to contrast enhancement preprocessing which is scarce in open literature was also presented. The analysis results show that the target recognition algorithm could be useful for the automatic target recognition using SAR images.

SAR 영상을 이용한 자동표적추출 알고리즘의 성능 분석 (Performance Analysis of Automatic Target Extraction Algorithms by using SAR Images)

  • 허동석;김태정
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.61-64
    • /
    • 2007
  • SAR 영상에 존재하는 군사표적은 광학 영상에 있는 군사표적에 비하여 쉽게 구별하기 힘들다. 이는 전체 영상에서 군사표적을 구성하는 픽셀의 수가 매우 적기 때문이다. 이러한 문제 때문에 SAR 영상 분석가들은 영상을 분석하는 것이 어렵다. 이 문제를 해결하기 위해서는 자동화된 분석 시스템이 필요하다. 본 논문에서는 기존에 연구된 SAR 영상을 이용한 자동표적추출 시스템을 분석하고 구현하였다. 구현된 자동표적추출 시스템을 MSTAR 데이터 셋을 이용하여 실험하여 결과를 도출하고, 그 결과를 분석하여 자동표적추출 시스템 각 단계의 성능을 분석하였다. 분석 결과 각 단계별로 최적의 성능을 보여주는 임계값을 알아낼 수 있었다.

  • PDF

MSTAR 자료를 이용한 EOC 조건(표적 폐색 및 촬영부각)에 따른 표적인식 정확도 분석 (Accuracy Analysis of Target Recognition according to EOC Conditions (Target Occlusion and Depression Angle) using MSTAR Data)

  • 김상완;한아림;조근후;김동한;박상은
    • 대한원격탐사학회지
    • /
    • 제35권3호
    • /
    • pp.457-470
    • /
    • 2019
  • Synthetic Aperture Radar(SAR)영상을 이용한 자동 표적 인식(Automatic Target Recognition(ATR))은 날씨와 주야에 영향을 받지 않는 장점으로 감시, 정찰, 및 국토안보 등의 분야에서의 관심이 증대되고 있다. 그러나 SAR 자동표적인식은 실제 환경에서 발생하는 다양한 문제로 인해 자동으로 표적을 식별하는데 어려움이 있다. 따라서 본 연구에서는 실제 환경과 유사한 Extended Operating Conditions(EOC)에서의 ATR 문제에 대한 분석을 수행하였다. 특히, 표적의 폐색 조건과 훈련 영상과 테스트 영상의 관측 부각 차이에 따른 표적 식별률의 변화를 정량적으로 분석하였다. 관측 부각은 $30^{\circ}$$45^{\circ}$로 구분하였으며, 10%부터 50%까지의 다양한 폐색 조건에 대한 영상을 생성하기 위해 SARBake 알고리즘을 적용하였다. 표적에 대한 정량적인 식별률은 표적인식 분야에서 대표적으로 이용되는 템플릿 매칭과 Adaboost 알고리즘을 적용해 분석하였다. 분석 결과 관측부각에 따른 식별률은 두 알고리즘 모두 $45^{\circ}$에서 $30^{\circ}$보다 30%이상 급감했다. $30^{\circ}$의 관측 부각에서 템플릿 매칭은 75.88%, Adaboost 알고리즘은 94.46%로 Adaboost의 식별률이 높았다. 폐색 조건에 따른 식별률은 템플릿 매칭의 경우 폐색이 없을 때 95.77%에서 10%의 폐색 조건일 때 52.69%로 식별률이 급감하였다. Adaboost 알고리즘의 경우 폐색이 없을 때 85.16%, 10%의 폐색 조건일 때 68.48%로 폐색 조건에서의 식별률이 높았다. Adaboost 알고리즘은 50%의 폐색조건에서도 52.48%로 템플릿 매칭이 동일한 조건에서 30% 이하의 식별률을 보이는 것에 비해 전반적으로 높은 식별률을 보였다.

OpenSARShip DB를 이용한 선박식별 성능 분석 (Analysis of Ship Classification Performances Using OpenSARShip DB)

  • 이승재;채태병;김경태
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.801-810
    • /
    • 2018
  • 위성 SAR 영상을 이용한 선박 모니터링은 선박탐지, 선박변별, 선박식별의 세 단계로 분류할 수 있다. 이 중 선박탐지 및 변별에 대해서는 세계적으로 많은 연구가 이루어졌으나, 선박식별에 대해서는 소수의 연구들만이 존재한다. 따라서 향후 고성능의 선박 모니터링 시스템을 구축하기 위해서는 많은 선박식별 연구가 필요한 상황이다. 선박식별 연구를 수행하기 위해서는 먼저 여러 기종의 선박에 대한 위성 SAR 영상과 이에 대응하는 선박 기종 정보를 모두 획득하여 데이터베이스(database: DB)를 구축하는 것이 중요하다. 항공 SAR 영상을 이용한 표적식별의 경우, 지상표적에 대한 미국 moving and stationary target acquisition and recognition(MSTAR) DB를 이용하여 많은 연구들이 수행되었지만, SAR 위성을 이용한 선박식별의 경우, 아직까지 공개적으로 이용 가능한 DB가 없었다. 이에 최근 중국 Shanghai Key Laboratory에서는 유럽우주국(European Space Agency: ESA)에서 운용하는 Sentinel-1 영상과 자동인식시스템(automatic identification system: AIS)으로부터 획득한 선박정보를 결합하여 선박식별 연구용 DB인 OpenSARShip DB를 구축하였다. 이에 먼저 항공 SAR 영상을 이용한 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 위성 SAR DB에 적용하여 OpenSARShip DB의 활용성을 조사해볼 필요가 있다. 따라서 본 논문에서는 기존 항공 SAR 표적식별에서 높은 성능을 보였던 최근 식별 개념들을 OpenSARShip DB에 적용하여 선박식별을 수행한 후, 그 성능을 분석하여 OpenSARShip DB의 활용성을 조사한다.

Conditional GAN을 이용한 SAR 표적영상의 해상도 변환 (Resolution Conversion of SAR Target Images Using Conditional GAN)

  • 박지훈;서승모;최여름;유지희
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.12-21
    • /
    • 2021
  • For successful automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, SAR target images of the database should have the identical or highly similar resolution with those collected from SAR sensors. However, it is time-consuming or infeasible to construct the multiple databases with different resolutions depending on the operating SAR system. In this paper, an approach for resolution conversion of SAR target images is proposed based on conditional generative adversarial network(cGAN). First, a number of pairs consisting of SAR target images with two different resolutions are obtained via SAR simulation and then used to train the cGAN model. Finally, the model generates the SAR target image whose resolution is converted from the original one. The similarity analysis is performed to validate reliability of the generated images. The cGAN model is further applied to measured MSTAR SAR target images in order to estimate its potential for real application.

어텐션 적용 YOLOv4 기반 SAR 영상 표적 탐지 및 인식 (SAR Image Target Detection based on Attention YOLOv4)

  • 박종민;육근혁;김문철
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.443-461
    • /
    • 2022
  • Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.

Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석 (Similarity Analysis Between SAR Target Images Based on Siamese Network)

  • 박지훈
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

합성곱 신경망의 Channel Attention 모듈 및 제한적인 각도 다양성 조건에서의 SAR 표적영상 식별로의 적용 (Channel Attention Module in Convolutional Neural Network and Its Application to SAR Target Recognition Under Limited Angular Diversity Condition)

  • 박지훈;서승모;유지희
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.175-186
    • /
    • 2021
  • In the field of automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, it is usually impractical to obtain SAR target images covering a full range of aspect views. When the database consists of SAR target images with limited angular diversity, it can lead to performance degradation of the SAR-ATR system. To address this problem, this paper proposes a deep learning-based method where channel attention modules(CAMs) are inserted to a convolutional neural network(CNN). Motivated by the idea of the squeeze-and-excitation(SE) network, the CAM is considered to help improve recognition performance by selectively emphasizing discriminative features and suppressing ones with less information. After testing various CAM types included in the ResNet18-type base network, the SE CAM and its modified forms are applied to SAR target recognition using MSTAR dataset with different reduction ratios in order to validate recognition performance improvement under the limited angular diversity condition.