• 제목/요약/키워드: MSL

검색결과 402건 처리시간 0.021초

A Simple and Efficient Method to Determine Rivaroxaban in Rat Plasma Using Liquid-Liquid Extraction and LC-MRM

  • Lee, Hyo Chun;Kim, Dong Yoon;Choi, Min-Jong;Jin, Sung Giu;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • 제10권2호
    • /
    • pp.66-70
    • /
    • 2019
  • Rivaroxaban (RRN) is the first available active direct factor Xa inhibitor (anticoagulant) with oral administration. Due to its success in market, there have been efforts to develop various RRN formulations, and the development of good analytical methods for its in vivo evaluation is an essential prerequisite. Thus, here, a simple and efficient method to determine RRN in rat plasma using liquid-liquid extraction (LLE) and liquid chromatography and multiple reaction monitoring (LC-MRM) was presented. The use of ethyl acetate as the LLE solvent results appropriate extraction and purification of RRN and it also helps the significant reduction of rat plasma volume required for RRN quantitation. The developed method showed good analytical performance including specificity, linearity ($r^2{\geq}0.999$ within 0.5 - 500 ng/mL), sensitivity (the lower limit of quantitation at 0.5 ng/mL), accuracy (89.3 - 107.0%), precision (${\geq}12.7%$), and recovery (89.2 - 105.7%). Additionally, RRN in sample extracts showed good stability. Finally, the applicability of the validated method to the PK evaluation of RRN was confirmed after its oral administration to normal rats. The present method is the first analytical method employing LLE for the simple and efficient extraction and purification of RRN in rat plasma. Therefore, the present method can contribute to the development of new RRN formulations as well as to the monitoring of RRN in special clinical situations through its efficient determination in various samples with or without minor modification.

Development and Validation of an LC-MS/MS Method for Determination of Damaurone D in Rat Plasma and its Application to Pharmacokinetic Study in Rats

  • Lee, Wonpyo;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • 제10권1호
    • /
    • pp.38-42
    • /
    • 2019
  • Damaurone D belongs to the genus Rosa and is a traditional medicinal product used for the treatment of depression, inflammation, and infectious diseases. The purpose of this study was to develop a simple liquid chromatography-tandem mass spectrometry method for the detection of damaurone D in rat plasma and to demonstrate its application in pharmacokinetic studies. Damaurone D and berberine (internal standard) were extracted with acetonitrile using a protein precipitation method. Mass transition was monitored in multiple reaction monitoring mode at m/z $323.2{\rightarrow}267.0$ for damaurone D and m/z $336.1{\rightarrow}320.0$ for berberine in positive ion mode. Analytical validation was conducted by evaluating the specificity, linearity, accuracy, precision, matrix effect, extraction recovery, and stability. The calibration curves were linear over 2-1000 ng/mL. The intra- and inter-day precision and accuracy of quality control samples were 4.79-13.33% and 86.23-102.75%, respectively. The matrix effect and extraction recovery were 96.11-98.47% and 96.11-102.25%, respectively. In the pharmacokinetic study after intravenous administration of damaurone D at a dose of 3 mg/kg in rats, the area under the curve and clearance of damaurone D in rat plasma were $16750.26{\pm}2676.10min{\cdot}ng/mL$ and $182.44{\pm}31.36mL/min/kg$, respectively.

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)

  • Jang, Hyun Jun;Park, Jeong Hyang;Lee, Ga Seul;Lee, Sung Bae;Moon, Jeong Hee;Choi, Joon Sig;Lee, Tae Geol;Yoon, Sohee
    • Mass Spectrometry Letters
    • /
    • 제10권1호
    • /
    • pp.11-17
    • /
    • 2019
  • Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.

Simultaneous Quantitative Determination of Nine Hallucinogenic NBOMe Derivatives in Human Plasma Using Liquid Chromatography Tandem Mass Spectrometry

  • Seo, Hyewon;Yoo, Hye Hyun;Kim, Young-Hoon;Hong, Jin;Sheen, Yhun Yhong
    • Mass Spectrometry Letters
    • /
    • 제10권1호
    • /
    • pp.18-26
    • /
    • 2019
  • We developed a bioanalytical method for simultaneous determination of nine NBOMe derivatives (25H-NBOMe, 25B-NBOMe, 25E-NBOMe, 25N-NBOMe, 25C-NBOH, 25I-NBOH, 25B-NBF, 25C-NBF, and 25I-NBF) in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). Human plasma samples were pre-treated using solid-phase extraction. Separation was achieved on a C18 column under gradient elution using a mobile phase containing 0.1% formic acid in acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 mL/min. Mass detection was performed in the positive ion mode using multiple reaction monitoring. The calibration range was 1-100 ng/mL for all quantitative analytes, with a correlation coefficient greater than 0.99. The intra- and inter-day precision and accuracy varied from 0.85 to 6.92% and from 90.19 to 108.69%, respectively. The recovery ranged from 86.36 to 118.52%, and the matrix effects ranged from 27.09 to 99.72%. The stability was acceptable in various conditions. The LC-MS/MS method was validated for linearity, accuracy, precision, matrix effects, recovery and stability in accordance with the FDA guidance. The proposed method is suitable for reliable and robust routine screening and analysis of nine NBOMe derivatives in forensic field.

Characterization of the N-glycosylation of Recombinant IL-4 and IL-13 Proteins Using LC-MS/MS Analysis and the I-GPA Platform

  • Lee, Ju Yeon;Choi, Jin-woong;Bae, Sanghyeon;Hwang, Heeyoun;Yoo, Jong Shin;Lee, Joo Eon;Kim, Eunji;Jeon, Young Ho;Kim, Jin Young
    • Mass Spectrometry Letters
    • /
    • 제12권3호
    • /
    • pp.66-75
    • /
    • 2021
  • Interleukin-4 (IL-4) and IL-13 are cytokines secreted by immune cells. Cytokines induce the proliferation of macrophages or promote the differentiation of secretory cells. The initiation and progression of allergic inflammatory diseases, such as asthma, are dependent on cytokines acting through related receptor complexes. IL-4 and IL-13 are N-glycoproteins. Glycan structures in glycoproteins play important roles in protein folding, protein stability, enzymatic function, inflammation, and cancer development. Therefore, the glycan structure of IL-4 and IL-13 needs to be elucidated in detail for the development of effective therapies. We report the first attempt to characterize the site-specific N-glycosylation of recombinant IL-4 and IL-13 via liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The tandem mass spectra of intact N-glycopeptides were identified using the Integrated GlycoProteome Analyzer (I-GPA) platform, which can automatically and rapidly analyze multiple N-glycopeptides, including their glycan composition and amino acid sequences. The recombinant IL-4 and IL-13 were identified with amino acid sequence coverages of 84% and 96%, respectively. For IL-4, 52 glycoforms on one N-glycosylation site were identified and quantified. In IL-13, 232 N-glycopeptides from three N-glycosylation sites were characterized, with the site Asn52 being the most extensively glycosylated (~80%). The complex glycans were the most abundant glycan on IL-4 and IL-13 (~96% and 91%, respectively), and the biantennary glycans were the most abundant in both recombinant IL-4 and IL-13 proteins.

Variation of Medicinal Plants Species Richness along Vertical Gradient in Makawanpur District, Nepal

  • Gaire, Damodar;Jiang, Lichun;Yadav, Vijay Kumar;Shah, Jit Narayan;Dhungana, Sunita;Upadhyaya, Anju;Manjan, Shiv Kumar;Heyojoo, Binod Kumar
    • Journal of Forest and Environmental Science
    • /
    • 제37권2호
    • /
    • pp.104-115
    • /
    • 2021
  • The research attempted to analyze the medicinal plant species richness in the vertical gradient from lower to the highest elevation of Makawanpur, focusing on the relationship between species richness and elevation which is very important for conservation and management of species diversity. Inventory was carried out in the study area by taking sampling intensity of 0.5% in the effective area. Altogether, 42 sample plots were laid in the field with the help of GIS software maintaining 50 m altitude difference. High species diversity was found in the herbs species whereas shrubs have comparatively low species diversity. The maximum species richness is found in herbs and poles whereas shrubs and trees have relatively low species richness. Research showed that species richness of medicinal plants increased with altitudinal gradient. While analyzing the species richness from 350 to 2,550 m (msl), the highest species richness was received with the elevation ranges from 1,800 m to 2,300 m. There was a positive relationship between species richness and altitudinal gradient in the study area. In addition, we have recorded the high value medicinal plants after 1,800 m altitude and rarely within 1,000 m. Medicinal plants correlated both positive and negative relationships with the increased altitude. The altitudinal response has positively seen except density (n/ha) of Shrubs. Domestication and cultivation of high value medicinal plants should be promoted in community forest including private lands. Training, workshops and awareness programs should be conducted to make people aware about medicinal plants resource utilization, conservation and commercialization of available medicinal plants.

A Simple and Efficient Method to Determine Montelukast in Rat Plasma Using Liquid-Liquid Extraction and Tandem Mass Spectrometry

  • Kim, Dong Yoon;Lee, Hyo Chun;Jang, Yong Jin;Kim, Jin Hee;Lee, Ha Ryeong;Kang, Myung Joo;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • 제11권4호
    • /
    • pp.71-76
    • /
    • 2020
  • While montelukast (ML), a cysteinyl-leukotriene type 1 receptor (CysLT1) antagonist is widely used to treat symptoms of rhinitis or asthma, its formulations are mainly limited to solid preparation due to its instability. Recently, there have been attempts to develop various ML dosage forms, and this situation increases the demand of sensitive and creditable methods to determine ML in various samples such as plasma. Thus, here, a simple and efficient method to determine ML in rat plasma using liquid-liquid extraction (LLE) and multiple reaction monitoring was presented. The mixture of DCM:EtOAc (25:75, v/v), the optimized extract solvent for LLE was found to be effective to extract ML without hydrophilic salts and proteins from the sample with limited volume. Also, the use of zafirlukast, instead of expensive ML-d6, as the internal standard makes the present method economical. The developed method was successfully validated in terms of selectivity, matrix effects (-14.8--6.9%), linearity (r230.998 within 0.5-500 ng/mL), sensitivity (the limit of detection and the lower limit of quantitation, ≤0.5 ng/mL), accuracy (88.4-100.6%), precision (3.0-13.3%), and recovery (80.8-86.3%) by following the FDA guidelines. Finally, the applicability of the validated method to pharmacokinetics (PK) studies was confirmed by the successful determination of PK parameters through it following oral administration of Singulair® granule in rats. Therefore, the present method can contribute to the development of new ML formulations through its performance to determine ML in rat plasma efficiently and sensitively.

Effect of Ginsenoside Rc on the Pharmacokinetics of Mycophenolic Acid, a UGT1A9 Substrate, and its Glucuronide Metabolite in Rats

  • Park, So-Young;Jeon, Ji-Hyeon;Jang, Su-Nyeong;Song, Im-Sook;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제12권2호
    • /
    • pp.53-58
    • /
    • 2021
  • Previous in vitro studies have demonstrated that ginsenoside Rc inhibits UGT1A9, but there are no available data to indicate that ginsenoside Rc inhibits UGT1A9 in vivo. The effect of single and repeated intravenous injection of ginsenoside Rc was evaluated on the pharmacokinetics of mycophenolic acid. After injection of ginsenoside Rc (5 mg/kg for one day or 3 mg/kg for five days), 2-mg mycophenolic acid was intravenously injected, and the pharmacokinetics of mycophenolic acid and mycophenolic acid-β-glucuronide were determined. Concentrations of mycophenolic acid and its metabolite from rat plasma were analyzed using a liquid chromatography-triple quadrupole mass spectrometry. Single or repeated pretreatment with ginsenoside Rc had no significant effects on the pharmacokinetics of mycophenolic acid (P > 0.05): The mean difference in maximum plasma concentration (Cmax) and area under the concentration-time curve (AUCinf) were within 0.83- and 0.62-fold, respectively, compared with those in the absence of the ginsenoside Rc. These results indicate that ginsenoside Rc has a negligible effect on the disposition of mycophenolic acid in vivo despite in vitro findings indicating that ginsenoside Rc is a selective UGT1A9 inhibitor. As a result, ginsenoside Rc has little possibility of interacting with drugs that are metabolized by UGT1A9, including mycophenolic acid.

Liquid Chromatography-Tandem Mass Spectrometric Analysis of Nannozinone A and Its Application to Pharmacokinetic Study in Mice

  • Lee, Chul Haeng;Kim, Soobin;Lee, Jaehyeok;Jeon, Ji-Hyeon;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.21-25
    • /
    • 2021
  • We aimed to develop and validate a sensitive analytical method of nannozinone A, active metabolite of Nannochelins A extracted from the Myxobacterium Nannocytis pusilla, in mouse plasma using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mouse plasma samples containing nannozinone A and 13C-caffeine (internal standard) were extracted using a liquid-liquid extraction (LLE) method with methyl tert-butyl ether. Standard calibration curves were linear in the concentration range of 1 - 1000 ng/mL (r2 > 0.998) with the inter- and intra-day accuracy and precision results less than 15%. LLE method gave results in the high and reproducible extraction recovery in the range of 78.00-81.08% with limited matrix effect in the range of 70.56-96.49%. The pharmacokinetics of nannozinone A after intravenous injection (5 mg/kg) and oral administration (30 mg/kg) of nannozinone A were investigated using the validated LC-MS/MS analysis of nannozinone A. The absolute oral bioavailability of nannozinone A was 8.82%. Plasma concentration of nannozinone A after the intravenous injection sharply decreased for 4 h but plasma concentration of orally administered nannozinone A showed fast distribution and slow elimination for 24 h. In conclusion, we successfully applied this newly developed sensitive LC-MS/MS analytical method of nannozinone A to the pharmacokinetic evaluation of this compound. This method can be useful for further studies on the pharmacokinetic optimization and evaluating the druggability of nannozinone A including its efficacy and toxicity.

A Dilute-and-Shoot LC-MS/MS Method for Screening of 43 Cardiovascular Drugs in Human Urine

  • Pham, Thuy-Vy;Lee, Gunhee;Mai, Xuan-Lan;Le, Thi-Anh-Tuyet;Nguyen, Thi Ngoc Van;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2021
  • A simple, specific, and economical LC-MS/MS method was investigated for the screening of 43 prescribed antihypertensive and related drugs in human urine. The urine samples were simply prepared by diluting and mixing with internal standard before directly introduced to the LC-MS/MS system, which is fast, straightforward, and cost-effective. Fractional factorial, Box-Behnken, and I-optimal design were applied to screen and optimize the mass spectrometric and chromatographic factors. The analysis was carried out on a triple quadrupole mass spectrometer system utilizing multiple reaction monitoring with positive and negative electrospray ionization method. Chromatographic separation was performed on a Thermo Scientific Accucore RP-MS column (50 × 3.0 mm ID., 2.6 ㎛) using two separate gradient elution programs established with the same mobile phases. Chromatographic separation was performed within 12 min. The optimal method was validated based on FDA guideline. The results indicated that the assay was specific, reproducible, and sensitive with the limit of detection from 0.1 to 50.0 ㎍/L. The method was linear for all analytes with coefficient of determination ranging from 0.9870 to 0.9981. The intra-assay precision was from 1.44 to 19.87% and the inter-assay precision was between 2.69 and 18.54% with the recovery rate ranges from 84.54 to 119.78% for all drugs measured. All analytes in urine samples were stable for 24 h at 25℃, and for 2 weeks at -60℃. The developed method improves on currently existing methods by including larger number of cardiovascular medications and better sensitivity of 12 analytes.