• 제목/요약/키워드: MSC.1/Circ.1238

검색결과 3건 처리시간 0.018초

IMO 피난지침 기반의 여객선 탈출시간 계산 프로그램 개발 (Development of an Evacuation Time Calculation Program for Passenger Ships Based on IMO Guidelines, MSC.1/Circ.1238)

  • 최진;김수영;신성철;강희진;박범진
    • 대한조선학회논문집
    • /
    • 제47권5호
    • /
    • pp.719-724
    • /
    • 2010
  • Thousands of passengers and crews are onboard a cruise ship and there are many cabins and large public spaces such as atria and theaters. Therefore it is easy to cause a huge loss of life and damage to property when accidents happen at sea. To improve the safety of passenger ships, in October 2007, IMO proposed MSC.1/Circ.1238 on guidelines for evacuation analysis and recommended its use. However, this guideline is difficult to apply because ship designers need to get many pieces of information from CAD drawings such as width and length of stairs and corridors and manually calculate the evacuation time. In this paper, for practical application of the guidelines, an evacuation time calculation program is developed using AutoCAD .NET API library and C Sharp language.

장애물 회피에 페널티 보행 속도 알고리즘을 적용한 여객선 승객 탈출 시뮬레이션 (Advanced Evacuation Analysis for Passenger Ship Using Penalty Walking Velocity Algorithm for Obstacle Avoid)

  • 박광필;하솔;조윤옥;이규열
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 논문에서는 여객선의 승객 비상 탈출 시뮬레이션을 구현하였다. 승객의 행동에 미치는 요인 중 연령, 성별을 고려하여 승객 개인의 보행 속도에 반영하는 속도 기반 모델을 사용하였다. 승객들의 집단 이동을 구현하기 위해 플로킹 알고리즘을 적용하였다. 장애물과의 충돌 회피 및 승객 간의 위치가 겹치는 현상을 방지하기 위해 페널티 보행 속도를 도입하였다. 이 알고리즘을 이용하여 여객선의 승객 탈출 규정인 IMO (International Maritime Organization) MSC (Maritime Safety Committee) Circ.1238에서 정의한 11가지 시험 문제에 적용하였다. 시험 문제를 통해 승객의 위치가 겹치는 현상이 없이 시뮬레이션 되는 것을 확인하였다.

A Study on Evacuation Safety of Trainingship HANBADA using FDS & maritimeEXODUS

  • KIM, Won-Ouk;HAN, Ki-Young;KIM, Dae-Hee
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.266-272
    • /
    • 2017
  • In this study, it was simulated and analyzed the evacuation safety to identify the cadets' evacuation time by using maritimeEXODUS which is applied IMO MSC.1/Circ.1238 theory as well as the trim and heel which are the major factor of reducing the ship evacuation speed. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. As a result of the analysis on visibility evacuation limit 5 m, it was found that the only one evacuation rallying point could not meet the evacuation safety. However, it derived the perfect evacuation safety under the condition of two rallying points available on wood fire. In case of Kerosene, it was satisfied the evacuation safety if the heeling was under $10^{\circ}$. Moreover, it could not meet the evacuation safety by evacuating through upper deck although there were two evacuation rallying points. When it was set by the lifeboat descending maximum angle-$20^{\circ}heel$ and $10^{\circ}trim$ which was described in SOLAS regulation, it was simulated that the wood fire having two evacuation rallying points in the center of the ship satisfied the evacuation safety.