• Title/Summary/Keyword: MRPC Probe

Search Result 10, Processing Time 0.037 seconds

Analysis of MRPC Probe Signal According to Defect Size Variation for S/G Tube in Nuclear Power Plant (원전SG세관의 결함크기에 따른 MRPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Song, Ho-Jun;Lim, Keon-Gyu;Lee, Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1008-1010
    • /
    • 2005
  • In the examination of steam generator(SG) tube in nuclear power plant, eddy current testing probes play an important role in detecting the defects. Bobbin probe and MRPC probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary MRPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it has excellent detection capability for small cracks, which is hardly detected by bobbin probe. In this paper, for the accurate analysis of experimental ECT signals, construction of MRPC probe signals database according to the variation of defect size is the main purpose. Using 3-D finite element method, ECT signals are analyzed, and signals analysis add according to frequency ingredient. The results, which are analysis and characteristics ion of electromagnetism simulation signals, is databased.

  • PDF

Simulation and Evaluation of ECT Signals From MRPC Probe in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치 해석을 이용한 Combo 표준 보정 시험편의 MRPC Probe 와전류 신호 모사 및 평가)

  • Yoo, Joo-Young;Song, Sung-Jin;Jung, Hee-Jun;Kong, Young-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.90-98
    • /
    • 2006
  • Signals captured from a Combo calibration standard tube paly a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals.

Detectability evaluation of the loose parts in steam generator by eddy current testing techniques

  • Kim, Kyungcho;Min, Kyongmahn;Kim, Changkuen;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1160-1167
    • /
    • 2018
  • Detectability of the loose parts (LPs) in steam generator (SG) was studied with eddy current testing technique such as X-probe, bobbin and rotating coils ($MRPC^{(R)}$) as a function of LP size and spacing between LP and tube or between LP and support structures. SG mockup simulating SG tube and support structures with LP was fabricated. The X-probe showed slightly better detectability than $MRPC^{(R)}$ for LP of ferrous (F-LP) material and vice versa for LP of nonferrous (NF-LP) material. In terms of feasibility, inspection rate and other predictable features of the SG tubing inspections, X-probe can be used reliably for monitoring the LPs and the flaws formed by LPs on SG tubes.

A Study on Applying Array Probe for Steam Generator Tube Inspection (배열형 탐촉자를 이용한 증기발생기 세관 검사 적용성 검토)

  • Kim, In Chul;Cheon, Keun Young;Lee, Young Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which comprises of the pressure boundary of primary system. The integrity of SG tube has been confirmed by the eddy current test every outage. In Korea, Bobbin probe and MRPC probe have been generally used for the eddy current test. Meanwhile the usage of Array probe has gradually increased in U.S., Japan and other countries. In this study, we investigated the defect detection capability of the Array probe through its preliminary application to SG tube inspection. The Array probe has the equivalent capability in the defect detection and sizing as the conventional methods. Thus it is desirable that the Array probe is generally applied to SG tube inspection in the domestic NPPs.

  • PDF

MRPC eddy current flaw classification in tubes using deep neural networks

  • Park, Jinhyun;Han, Seong-Jin;Munir, Nauman;Yeom, Yun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Kwon, Se-Gon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1784-1790
    • /
    • 2019
  • Accurate and consistent characterization of defects in steam generator tubes (SGT) in nuclear power plants is one of the key issues in the field of nondestructive testing since the large number of signals to be analyzed in a time-limited in-service inspection causes a serious problem in practice. This paper presents an effective approach to this difficult task of automated classification of motorized rotating pancake coil (MRPC) eddy current flaw acquired from tube specimens with deliberated defects using deep neural networks (DNN). This approach consists of five steps, namely, the data acquisition using the MRPC probe in the tube, the signal preprocessing to make data more suitable for training DNN, the data augmentation for boosting a training performance, the training of DNN, and finally demonstration of the trained DNN for discriminating the axial and circumferential defects. The high performance obtained in this study shows that DNN is useful for classification of defects in tubes from the MRPC eddy current signals even though the number of signals is very large.

A Study for the Proximity Condition and Optimum Analysis Technique for the SG Tubes (증기발생기 세관에 대한 근접도 상태 및 최적 평가기법에 대한 연구)

  • Shin, Ki-Seok;Moon, Gyoon-Young;Lee, Young-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.34-39
    • /
    • 2008
  • Steam Generator(SG) tubes are classified as one of the key components in nuclear power plants, and they should be periodically examined by the intensified management program for the assurance and diagnosis of their structural integrity. In this study, we use the optimum analysis technique to draw the detection and categorization of bowing(BOW) signals; abnormal tube-to-tube proximity in the SG upper bundle free span area. The locations in which BOW signals are detected likely have latent degradation of ODSCC(Outer Diameter Stress Corrosion Cracking). For the sake of timely and correct detection of BOW signals and diagnosis of ODSCC, we carried out the experimental demonstrations using a reduced mock-up. And we validated the MRPC(Motorized Rotating Pancake Coil) analysis technique is better than the bobbin. Hence, it comes to conclusion that the optimum analysis technique can be a good alternative for the reliable SG tube examination.

  • PDF

Development of Profile Technique for Steam Generator Tubes in Nuclear Power Plants Using $8{\times}1$ Multi-Array Eddy Current Probe ($8{\times}1$ 다중코일 와전류탐촉자를 이용한 원전 증기발생기 전열관 단면형상검사 기법 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • Various ECT techniques have been applied basically to assess the integrity of steam generator tithing in nuclear power plant. Among these techniques, the bobbin probe technique is applied generally to examine the volumetric flaws such as a crack-like defect and wear which is generally occurred on steam generator tubing, and additionally MRPC probe is used to examine closely tile top of tubesheet and bending regions due to the high possibility of cracking. Dent and bulge also may be formed on tube during installation process and operation of steam generator, but the dent and bulge indications greater than specific size criteria are recorded on examination report because these indications are not considered as flaw. These indications can be easily detected with bobbin probe and approximately sized with profile bobbin probe, but the size and shape can not be accurately verified. Accordingly, in this study, the $8{\times}1$ multi-array EC probe was designed to increase the measurement accuracy of the sectional profiling EC testing of tube. As a result, we would like to propose the application of $8{\times}1$ multi-array EC probe for the measurement of size and shape of profile change on steam generator tube in OPR-1000 nuclear power plant.

Variation of Eddy Current Signal According to the Defect Shape, Defect Depth and Radial Load in CFRP Tube (CFRP 튜브의 결함형상.결함깊이.레이디얼 하중에 따른 와전류 신호의 변화)

  • 송삼홍;안형근;이정순;오동준;송일;김철웅
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.2004-2011
    • /
    • 2004
  • The applicability of the ultrasonic C-scan inspection is restricted due to the deterioration of mechanical properties of specimen during the test. Therefore, the aim of this research is applied to Eddy Current (EC) test substitute for the C-scan inspection in CFRP tube containing defects. This research is to evaluate the EC signals for the inspection of CFRP tube containing various circular hole defects (20% to 100% depth to the specimen thickness) using the unloading specimen and radial loading specimen. This study was considered the following points; 1) Analysis of EC signals for the inspection of saw-cut defect and circular hole defect, 2) The evaluation of defect depths and EC signals relationship. 3) Variation of EC signal owing to the radial load. In conclusions, the high frequency such as 300∼500 kHz made it possible to the inspection of 40% to 100% defects. Particularly, in case of 20% defect, the EC signal was not detected due to the noise of micro-crack and delamination. While the depth of the hole defects were decreasing, the difference of the phase angle between unloading specimen and radial loading specimen was gradually increasing.

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.