• Title/Summary/Keyword: MRI(Magnetic resonance image)

Search Result 571, Processing Time 0.026 seconds

Breast Magnetic Resonance Image (MRI) Guideline: Breast Imaging Study Group of Korean Society of Magnetic Resonance in Medicine Recommendations

  • Choi, Seon Hyeong;Kang, Bong Joo;Jung, Seung Eun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.205-208
    • /
    • 2018
  • The purpose of this study is to establish an appropriate protocol for breast magnetic resonance imaging (MRI) in the discipline of image quality standards. The intention of the protocol is to increase effectiveness of medical image information exchange involved in construction, activation, and exchange of clinical information for healthcare.

Effect of Metals used in Orthopedic on Magnetic Resonance Imaging I (정형보철용 금속이 자기공명영상에 미치는 영향 I)

  • Kim, Hyeong-Gyun;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.46-50
    • /
    • 2012
  • Stainless steel and titanium used for orthopedic prosthetic metal, magnetic resonance imaging was measured quantitatively the extent of distortion. Based on reading tests at varying metal magnetic resonance imaging (MRI) were investigated. To two image acquisition conditions for having three metal bodies mutually quantitative it compared analyzed the image of cross direction and the image of lengthwise. As for the distortion of the magnetic resonance image, as for the distortion of image it became small in the order of Clip, Strainless and Titanium. In addition, with T1WI and T2WI which are image acquisition condition T2WI the distortion of image became small. As for the distortion of the image by the metal, you could see the distortion of image in elliptical shape, the metal a bigger image distortion appeared in many parts. If clinical doctor has the condition of the same operation, use the Titanium material, it can, raising the diagnostic value of magnetic resonance image inspection after the operating from Stainless.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Acquisition and Interpretation Guidelines of Breast Diffusion-Weighted MRI (DW-MRI): Breast Imaging Study Group of Korean Society of Magnetic Resonance in Medicine Recommendations

  • Kang, Bong Joo;Kim, Min Jung;Shin, Hee Jung;Moon, Woo Kyung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.83-95
    • /
    • 2022
  • The purpose of this study was to establish and provide guidelines for the standardized acquisition and interpretation of diffusion-weighted magnetic resonance imaging (DW-MRI) to improve the image quality and reduce the variability of the results interpretation. The standardized protocol includes the use of high-resolution DW-MRI with advanced techniques and post-processing. The aim of the protocol is to increase the effectiveness of the medical image information exchange involved in the construction, activation, and exchange of clinical information for healthcare use. An organized interpretation form could make DW-MRIs' interpretation easier and more familiar. Herein, the authors briefly review the basic principles, optimized image acquisition, standardized interpretation guidelines, false negative and false positive cases of DW-MRI, and provide a standard interpretation form and examples of various cases to help users become more familiar with the DW-MRI.

Evaluation of Noise Power Spectrum Characteristics by Using Magnetic Resonance Imaging 3.0T (3.0T 자기공명영상을 이용한 잡음전력스펙트럼 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study aim of quantitative assessment of Noise Power Spectrum(NPS) and image characteristics of by acquired the optimal image for noise characteristics and quality assurance by using magnetic resonance imaging(MRI). MRI device was (MAGNETOM Vida 3.0T MRI; Siemense healthcare system; Germany) used and the head/neck shim MR receive coil were 20 channels coil and a diameter 200 mm hemisphere phantom. Frequency signal could be acquired the K-space trajectory image and white image for NPS. The T2 image highest quantitatively value for NPS finding of showed the best value of 0.026 based on the T2 frequency of 1.0 mm-1. The NPS acquired of showed that the T1 CE turbo image was 0.077, the T1 CE Conca2 turbo image was 0.056, T1 turbo image was 0.061, and the T1 Conca2 turbo image was 0.066. The assessment of NPS image characteristics of this study were to that could be used efficiently of the MRI and to present the quantitative evaluation methods and image noise characteristics of 3.0T MRI.

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

An Analysis on the Effect of the Increase in the Fee of Magnetic Resonance Imaging Deciphering of the External Hospital: Focusing on the Brain Magnetic Resonance Imaging (MRI 외부병원 판독 수가 인상의 효과 분석: 뇌 관련 자기공명영상을 중심으로)

  • Kim, Logyoung;Sakong, Jin;Jo, Minho;Wee, Seah;Lee, Jinyong;Kim, Yongkyu
    • Health Policy and Management
    • /
    • v.31 no.3
    • /
    • pp.261-271
    • /
    • 2021
  • Background: In 2018, the government increased the fee for the magnetic resonance imaging (MRI) image deciphering services of the external hospital to discourage the redundant MRI scan and to induce appropriate use of the MRI services. It is important to evaluate the effect of the policy to provide the basis for establishing other MRI-related policies. Methods: The healthcare data of the patients who had brain MRI scans were organized by episode and analyzed using the panel study in order to find out the effect of the MRI-related policy on the substitution effect and the medical expenses. Results: As a result of the increase in the fee of deciphering the MRI image, there has been an uplift in deciphering the MRI scan of the external hospital. It implies that more hospitals chose to use the MRI scan taken by other clinics or hospitals, rather than the MRI scan taken at their own facilities. Conclusion: The research results imply that a policy that facilitates the exchange of the medical image data between the hospitals is needed in order to establish an efficient management system of the healthcare resources. Such improvement is expected to reduce the social cost and contribute to the stability in the finance of national health insurance.

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

Air Bubbles Mimic Disc Herniation in MRI after Cervical Epidural Block

  • Kim, Tae-Sam;Shin, Sung-Sik;Kim, Jung-Ryul;Kim, Dal-Yong
    • The Korean Journal of Pain
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2010
  • Magnetic resonance image (MRI) is the most sensitive imaging test of the spine in routine clinical practice. Unlike conventional x-ray examinations and computed tomography scans, high-quality magnetic resonance images can be assured only if patients are able to remain perfectly still. However, some patients find it uncomfortable to remain still because of pain. In that condition, interlaminar cervical epidural injections can reduce pain and allow the procedure. When using air with the "loss of resistance" technique in epidural injections to identify the epidural space, there is the possibility of injected excessive air epidurally to mimic a herniated disc. We describe a case report of epidural air artifact in a cervical MRI after cervical epidural injections.

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.