• Title/Summary/Keyword: MRFs (Myogenic regulatory factors)

Search Result 7, Processing Time 0.022 seconds

Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation

  • Chao, Zhe;Zheng, Xin-Li;Sun, Rui-Ping;Liu, Hai-Long;Huang, Li-Li;Cao, Zong-Xi;Deng, Chang-Yan;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.1037-1043
    • /
    • 2016
  • Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

The effects of the mulberry and silkworm intake on androgen receptor mRNA and myogenic regulatory factors expression of rats muscle for resistance exercise (오디와 누에 섭취가 rats의 저항성 운동에 따른 androgen receptor mRNA와 myogenic regulatory factors의 발현에 미치는 영향)

  • Yang, Sung Jun;Kim, Chang Yong;Lee, Jo Byoung;Kang, Sung Sun;Lee, Jong Jin
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • The purpose of this study is to investigate the effects of supplementation of mulberry powder, mulberry extract and silkworm powder during the 8 weeks of resistance exercise on Androgen receptor(AR) mRNA and Myogenic regulatory factors(MRFs) expression of rats muscle. Fifty males, Sprague-Dawley rat, were randomly divided into 5 groups: CON(control group, n = 10), REG(resistance exercise group, n = 10), MP REG(mulberry powder intake and resistance exercise group, n = 10), ME REG(mulberry extract intake and resistance exercise group, n = 10) and SP REG(silkworm powder intake and resistance exercise group, n = 10). After climbing the ladder without weights during the 1 week of adaptation period, the rats in the resistance exercise group were trained to climb a 0.98-m vertical(80 degree incline) ladder with weights in their tail during 7 weeks(10 times each day, 2 days per week). After exercise, the skeletal muscle was extracted from the flexor hallucis longus. After separating the total ribonucleic acid (RNA) of each group, quantitative polymerase chain reaction was used to analyze RNA quantitatively. AR mRNA and MRFs expression revealed that all of the treated groups had significantly difference. AR mRNA expression increased in ME REG $6.24{\pm}1.85$ and SP REG $9.68{\pm}0.28$ fold compared to CON. Myod mRNA expression increased in MP REG $6.04{\pm}0.47$, ME REG $4.31{\pm}1.58$ and SP REG $8.11{\pm}0.57$ fold compared to CON. And myogenin mRNA expression increased in MP REG $4.11{\pm}0.42$, ME REG $4.12{\pm}0.45$ and SP REG $6.50{\pm}0.61$ fold compared to CON. In conclusion, during the resistance exercise, providing mulberry and silkworm gives positive effect on AR mRNA and MRFs expression increase.

Effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells

  • Han, Yunfei;Guo, Wenrui;Su, Rina;Zhang, Yanni;Yang, Le;Borjigin, Gerelt;Duan, Yan
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.614-623
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells (SMSCs). Methods: Primary SMSCs were isolated from hind leg biceps femoris muscles of Wurank lambs (slaughtered at three months, Mth-3) and adults (slaughtered at fifteen months, Mth-15). SMSCs were selected by morphological observation and fluorescence staining. Myogenic regulatory factors (MRF) and myosin heavy chain (MyHC) expressions of SMSCs were analyzed on days 1, 3, 4, and 5. Results: The expressions of myogenic factor 5 (Myf5), myogenic differentiation (MyoD), Myf6, and myogenin (MyoG) in Mth-15 were significantly higher in Mth-15 than in Mth-3 on days 1, 3, and 4 (p<0.05). However, MyoG expression in Mth-15 was significantly lower than in Mth-3 on day 5 (p<0.05). The expressions of MyHC I, MyHC IIa, and MyHC IIx in Mth-15 were significantly higher than in Mth-3 on days 1 and 3 (p<0.05), and MyHC IIb were significantly lower than in Mth-3 on days 3 and 4 (p<0.05). In contrast, the expression of MyHC IIx in Mth-15 was significantly lower and MyHC IIb was significantly higher than in Mth-3 on days 5 (p<0.05). Conclusion: The slaughter age altered the expression of MRFs and MyHCs in SMSCs while differentiation, which caused the variation of myogenic characteristics, and thus may affect the meat quality of Wurank sheep.

Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

  • Yang, Zhi-Qin;Qing, Ying;Zhu, Qing;Zhao, Xiao-Ling;Wang, Yan;Li, Di-Yan;Liu, Yi-Ping;Yin, Hua-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range). The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T) were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TTCT (p<0.05). Moreover, the interaction between housing system and combined genotypes has no significant effect on the traits of muscle fiber (p>0.05). Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

Effect of Simple Formulas of Muscle Section in Donguibogam on Myogenic Regulatory Factors and IGF-1 Expression in C2C12 Cells

  • Yang, In Jun;Tettey, Clement;Shin, Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Simple formulas (單方) of muscle section in Donguibogam (東醫寶鑑) have long been prescribed for strengthening muscle and/or prevention of age-related muscle loss. However, biological activity and mechanisms by which they influence myoblast differentiation have not been studied. Therefore, in this study, we evaluated the effects of 14 simple formulas on myoblast differentiation in C2C12 myoblast cells under non-cytotoxic ($0.5mg/m{\ell}$) conditions. C2C12 cells were treated with water extracts of simple formulas for 72 h, and RT-PCR was performed to determine the gene expression levels of myogenic regulatory factors (MRFs), including myoD, myogenin, MRF4, myf5, and insulin like growth factor-1 (IGF-1). Treatment with Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) resulted in a significant increase in expression of myogenin in C2C12 cells. Treatment with Allii Macrostemi Bulbus (AM), Colocasiae Rhizoma (CR), and Pini Semen (PS) also resulted in increased expression of MRF4 in C2C12 cells. In addition, enhanced expression of IGF-1 was observed in treatment with Eucommiae cortex (EC), Dioscoreae Rhizoma (DR), Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) in C2C12 cells. These results indicate that simple formulas of muscle section in Donguibogam could potentially enhance myoblast differentiation at least in part via increasing expression of myogenin, and/or MRF4 and/or IGF-1.

Effects of Carnosic Acid on Muscle Growth in Zebrafish (Danio rerio) (제브라피쉬 근육성장에서의 carnosic acid의 효과)

  • Kim, Jeong Hwan;Jin, Deuk-Hee;Kim, Young-Dae;Jin, Hyung-Joo
    • Korean Journal of Ichthyology
    • /
    • v.26 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • Myogenesis is the formation process of multinucleated myofiber with a contractile capacity from muscle satellite cell (MSCs) during life. This process is tightly controlled by several transcription factors such as Pax3 and Pax7 (paired box protein 3 and 7), MEF2C (myocyte enhancer factor 2) and MRFs (myogenic regulatory factors) etc. On the contrary, myostatin (MSTN) is a transforming growth factor-${\beta}$ superfamily, which functions as a negative regulator of skeletal muscle development and growth. Carnosic acid (CA) is a major phenolic component in rosemary (Rosmarinus officinalis) and have been reported various biological activities such as anticancer, antioxidant, antimicrobial and therapeutic agents for amnesia, dementia, alzheimer's disease. This study was confirmed to effects of CA on muscle cell line and muscle tissue alteration of zebrafish by intramuscular injection or feeding methods. $10{\mu}M$ CA showed a non-cytotoxic on myoblast and a complete inhibition effect against myostatin activity on luciferase assay. In intramuscular injection experiment, the total protein and triglyceride amount of $10{\mu}M/kg$ of CA injected group increased by 11% and decreased by 13% compared to these of the no injected group. In histology analysis of muscle tissues by hematoxylin/eosin staining, the number of muscle fiber of $10{\mu}M/kg$ of CA injected group decreased by 29% and fiber area increased 40% compared to these of no injected group. In feeding experiment, the total protein and triglyceride amount no significance difference compared to these of the normal feeding group. In histology analysis, the number of muscle fiber of 1% CA fed group decreased by 35% and fiber area increased 56% compared to these of normal fed group. We identified that CA have an effect on hypertrophy of muscle fiber in adult zebrafish and the results of this study are considered as the basic data that can reveal the mechanisms of muscle formation via gene and protein level analysis.

Recent Studies on Natural Products that Improve Myogenesis (Myogenesis 촉진에 관여하는 최근 천연물의 동향)

  • Chae, Jongbeom;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • As the elderly population increases, it is becoming important to prevent and treat muscle loss caused by aging or disease. Steroidal androgen in the protein assimilation steroid (AAS) system is mainly used to induce muscle improvement, but it is well known that long-term or excessive doses of AAS result in various side effects, although they are prescribed for various muscle and weight loss treatments. Research is therefore underway to explore natural substances that promote muscle renewal with relatively few side effects. However, despite many studies on the improvement of skeletal muscle and the reduction of muscle disease using natural products, there is still a lack of significant clinical results and mechanism studies. The promotion of muscle regeneration through treatment with natural substances typically involves three mechanisms: positive control of the muscle modulating factor (MRF), activation of the protein synthesis mechanism, and inhibition of the protein breakdown mechanism. A study of plant extracts that are known to have muscle neoplasmic stimulation effects, such as black ginseng, plum, and nutmeg, as well as single substances derived from natural products, such as creatine, catechin, and several fatty acids, is therefore described. We also summarize the mechanisms that have been identified so far through which each of these extracts or single materials facilitates muscle regeneration and the signaling pathways that they mediate.