• Title/Summary/Keyword: MRAM integration

Search Result 4, Processing Time 0.018 seconds

MTJ based MRAM Core Cell

  • Park, Wanjun
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.101-105
    • /
    • 2002
  • MRAM (Magnetoresistive Random Access Memory) is a promising candidate for a universal memory that meets all application needs with non-volatile, fast operational speed, and low power consumption. The simplest architecture of MRAM cell is a series of MTJ (Magnetic Tunnel Junction) as a data storage part and MOS transistor as a data selection part. This paper is for testing the actual electrical parameters to adopt MRAM technology in the semiconductor based memory device. The discussed topics are an actual integration of MRAM core cell and its properties such as electrical tuning of MOS/MTJ for data sensing and control of magnetic switching for data writing. It will be also tested that limits of the MRAM technology for a high density memory.

Technology of MRAM (Magneto-resistive Random Access Memory) Using MTJ(Magnetic Tunnel Junction) Cell

  • Park, Wanjun;Song, I-Hun;Park, Sangjin;Kim, Teawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • DRAM, SRAM, and FLASH memory are three major memory devices currently used in most electronic applications. But, they have very distinct attributes, therefore, each memory could be used only for limited applications. MRAM (Magneto-resistive Random Access Memory) is a promising candidate for a universal memory that meets all application needs with non-volatile, fast operational speed, and low power consumption. The simplest architecture of MRAM cell is a series of MTJ (Magnetic Tunnel Junction) as a data storage part and MOS transistor as a data selection part. To be a commercially competitive memory device, scalability is an important factor as well. This paper is testing the actual electrical parameters and the scaling factors to limit MRAM technology in the semiconductor based memory device by an actual integration of MRAM core cell. Electrical tuning of MOS/MTJ, and control of resistance are important factors for data sensing, and control of magnetic switching for data writing.

Design of Local Field Switching MRAM (Local Field Switching 방식의 MRAM 설계)

  • Lee, Gam-Young;Lee, Seung-Yeon;Lee, Hyun-Joo;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.1-10
    • /
    • 2008
  • In this paper, we describe a design of a 128bit MRAM based on a new switching architecture which is Local Field Switching(LFS). LFS uses a local magnetic field generated by the current flowing through an MTJ. This mode reduces the writing current since small current can induce large magnetic field because of close distance between MTJ and the current. It also improves the cell selectivity over using conventional MTJ architecture because it doesn't need a digit line for writing. The MRAM has 1-Transistor 1-Magnetic Tunnel Junction (IT-1MTJ) memory cell structure and uses a bidirectional write driver, a mid-point reference cell block and a current mode sense amplifier. CMOS emulation cell is adopted as an LFS-MTJ cell to verify the operation of the circuit without the MTJ process. The memory circuit is fabricated using a $0.18{\mu}m$ CMOS technology with six layers o) metal and tested on custom board.

Distribution of Fe-Mn Ore in Ugii Nuur, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 우기누르 철-망간 분포 특성)

  • Park, Gyesoon;Lee, Bum-Han;Kim, In-Joon;Heo, Chul-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed a joint survey on Ugii Nuur Fe-Mn mineralized area. Following the survey, we carried out magnetic survey and 3D magnetic susceptibility inversion. Based on the inversion results, basic feasibility study and 3D imaging of Fe-Mn mineralized area were performed using 3D geological modeling technique. Using the distribution of total magnetic field data, we were confirmed for the possibility of horizontal extension of ore bodies from surface outcrops. The 3D magnetic susceptibility model, which is highly related with Fe content, analyzed by inversion shows that the ore bodies of Deposit 1 and Deposit 2 are extended to the underground and ore bodies that are not exposed on the surface are largely distributed in the underground. If we perform the integration analysis using this magnetic susceptibility model and the ore grade data analyzed by drilling survey, it is possible to carry out the effective potential evaluation of Ugii Nuur Fe-Mn ore deposit.