• Title/Summary/Keyword: MRAC(Model Reference Adaptive Control)

Search Result 73, Processing Time 0.026 seconds

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

Algorithm of model reference adaptive control with error signal via walsh functions (Walsh 함수에 의한 신호잡음을 갖는 MRAC의 알고리즘)

  • 안두수;이재춘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.95-96
    • /
    • 1986
  • 시스템을 입력과 출력값 만으로 제어하고자 할 경우에는, 플랜트의 파라메타를 추정하면서 제어해 나가야 할 것이다. 이러한 경우에는, 귀환제어나 최적제어 형태로는 여러가지 문제점이 발견되어서, 최근에 적응제어가 많이 연구되고 있다. 이에는 Gain-Scheduling 방법, Self-tuning regulator 방법 및 model reference adaptive control 방법이 있다. Gain-Scheduling 방법은 미지의 파라메타가 plant에 있을지라도, 이를 즉시 예측할 수 있을 경우 보조변수 추정을 통하여 이득을 조절하여 시스템을 안정시키는 것이고, self tuning regulator는 보조변수를 직접 조정하여 시스템을 제어한다. 또 model reference adaptive control 방법은 기준모델을 정하여, 이에 따라 관측기 등을 통하여, 플랜트의 파라메타를 추정 제어해 나가는 것이다. 이때 기준 모델의 출력과 플랜트 출력사이의 오차를 어떻게 할 것인가? 추정되는 파라메타와 오차와의 대수관계 및 차수 등, 그 한계 해석이 최근의 MRAC 설계연구에 큰 과제가 되어 왔다. 이에 본 연구에서는 신호합성 및 해석에 뛰어난 기능이 있는 Walsh 함수를 이용하여, 간단한 Micro computer의 도움으로, 오차 함수를 합성하고, 미지의 파라메타를 추정하여, 시스템의 adaptive filter설계에의 가능성에 대하여 연구하고자 한다. 또 이를 실제 예를 들어 고찰하였다.

  • PDF

Model Reference Adaptive Control of Systems with Actuator Failures through Fault Diagnosis

  • Choi, Jae-Weon;Lee, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.4-125
    • /
    • 2001
  • The problem of recongurable ight control is investigated, focusing on model reference adaptive control(MRAC) through imprecise fault diagnosis. The method integrates the fault detection and isolation(FDI) scheme with the model reference adaptive control, and can be implemented on-line and in real-time. The algorithm can cope with the fast varying parameters. The Simulation results demonstrate the ability of reconguration to maintain the stability and acceptable performance after a failure.

  • PDF

The Sensorless Vector Control of Induction Motor with Speed Estimator using MRAC (MRAC를 적용한 속도추정기를 가지는 유도전동기 센서리스 벡터제어)

  • 최승현;이성근;김윤식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.150-156
    • /
    • 2001
  • This paper proposed a speed estimator using MRAC(Model Reference Adaptive Control) for sensorless vector control. It is robust for parameter variation or disturbance and the estimated speed is used as feedback in a vector control system. Experiment is presented to confirm the theoretical analysis.

  • PDF

Control Progress of 6-DOF Robot using Adaptive Control (적응제어를 이용한 6자유도 로봇의 제어향상을 위한 연구)

  • 김병수;김규로;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.574-577
    • /
    • 2000
  • The purpose of robot manipulator control is to make for manipulator take a trace of pre-planned trajectory. In this study, the algorithm of MRAC(Model Reference Adaptive Control) on reference to adaptive control theory was studied. The experiments were performed on 6-DOF robot manipulator with respect to p-d(proportional-differential) controller and adaptive controller. The property of adaptive control was studied and its efficiency proved by being compared to p-d controller.

  • PDF

Model Reference Adaptive Control of a Linear Time-Varying System with an Additional Compensation Term (추가 보정항을 이용한 시변 시스템의 기준 모델 적응 제어)

  • Lee, Dong-Hyun;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.54-57
    • /
    • 2002
  • In this paper model reference adaptive control (MRAC) of linear time-varying(LTV) systems is considered. MRAC for a linear time invariant(LTI) system does not assure the boundedness of the output and parameter estimation errors in the presence of time variations of the parameters. However, changing the adaptive laws such as use of $\sigma$-modification can result in the boundedness of the output and parameter estimation errors[5]. Together with the $\sigma$-modification in the adaptive law, we also modify the control law by adding an additional term to the standard control law. The additional term leads to smaller bounds of the output and parameter estimation errors when compared to the case where only the standard control law is applied.

  • PDF

Model Reference Adaptive Control Using $\delta$-Operator of Hydraulic Servosystem (유압 서보계의 $\delta$연산자를 이용한 모델기준형적응제어)

  • Kim, Ki-Hong;Yoon, Il-Ro;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.151-157
    • /
    • 2000
  • The MRAC theory has proved to be one of the most popular algorithms in the field of adaptive control, particularly for practical application to devices such as an hydraulic servosystem of which parameters are unknown or varying during operation. For small sampling period, the discrete time system becomes a nonminimal phase system. The $\delta$-MRAC was introduced to obtain the control performance of nonminimal phase system, because the z-MRAC can not control the plant for small sampling period. In this paper, $\delta$-MRAC is applied to the control of an hydraulic servosystem which is composed of servovalve, hydraulic cylinder and inertia load.

  • PDF

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.