• 제목/요약/키워드: MR damper

검색결과 378건 처리시간 0.027초

다중 자기 코일 작동기를 사용한 MR damper의 설계해석 (Design of MR damper with multi_stage core)

  • 이규섭;유원희;류봉조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.525-528
    • /
    • 2008
  • The dynamic range of MR damper is the most important characteristics for the usage of semi-active control system. The damping force can be increased by simply decresing the orifice gap in the traditional oil damper, but it deteriorate the dynamic range in MR damper. In this paper, the multi-stage electro-magnetic core is suggested to maintain the performance of MR damper with a large damping force. The MR damper with 3 stage core is designed and manufactured for testing and analysis.

  • PDF

실험적으로 구한 MR 댐퍼의 개선된 Bouc-Wen 모델을 이용한 자동차 서스펜션 제어 (Vehicle Suspension Control Using an MR Damper of a Bouc-Wen Model Obtained from Experimental Studies)

  • 전형진;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.151-157
    • /
    • 2010
  • This paper presents the modelling of an MR damper system through extensive experimental studies. The hysteresis of the MR damper is modelled by using the improved Bouc-wen model. A test bed for experimental studies of measuring parameters of the MR damper is designed and implemented. Based on the experimental data, the Bouc-Wen Model is modified for the MR damper system. To check the modelling property, a vehicle suspension system is controlled using a PID controller for the verification of the MR damper model.

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

통합제진마운트용 MR 댐퍼의 실험적 성능 평가 (Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;최승복;김철호;이홍기;백재호;한현희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.65-70
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological (MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

  • PDF

통합제진마운트용 MR 댐퍼의 실험적 성능 평가 (Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;최승복;김철호;이홍기;백재호;한현희;우제관
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

인접건축물의 진동제어를 위한 MR감쇠기의 위치 선정에 관한 연구 (Performance Evaluation of Vibration Control of Adjacent Buildings According to Installation Location of MR damper)

  • 김기철;강주원
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.91-99
    • /
    • 2012
  • 최근 인접 건축물의 진동제어와 관련된 연구가 몇몇 연구자에 의하여 수행되고 있으며 그리고 구조물의 지진동 제어를 위하여 준능동 감쇠기의 일종인 MR 감쇠기가 적용되고 있다. 본 논문에서는 MR 감쇠기의 위치에 따른 인접 건축물의 지진동 제어성능을 분석하여 MR 감쇠기의 설치에 대한 최적의 위치를 선정하고자 한다. 본 연구를 위하여 인접한 20층과 15층 건축물을 예제 구조물로 사용하였으며 이 예제 구조물은 서로 다른 고유진동수를 갖게 하였으며 예제 구조물의 지진동 제어를 위하여 Groundhook 제어기법을 적용하였다. 예제 구조물의 수치해석에 의한 지진응답 분석결과, 변위응답 제어를 위하여 인접 건축물의 최상층에 MR 감쇠기를 설치하는 것이 제어성능에 있어서 우수하며 가속도응답을 제어하기 위해서는 인접 건축물의 중간층에 MR 감쇠기를 설치하는 것이 우수한 제어성능을 보이고 있다. MR 감쇠기를 중간층에 설치할 경우에, 변위응답과 가속도응답을 동시에 제어가 가능하다. 따라서 건축물의 제어 목표에 따라서 MR 감쇠기 설치위치를 적절하게 선정해야 할 것이다.

부가적인 유로가 있는 MR 댐퍼의 감쇠력 특성 (Damping Force Characteristics of MR Damper with Additional Flow Path)

  • 손정우;오종석;최승복
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.426-431
    • /
    • 2015
  • In this work, a new type of MR damper with additional flow path in piston is proposed and damping force characteristics are numerically evaluated. Flow-mode type MR damper is considered and mathematical model is established based on Bingham rheological model of MR fluid to obtain accurate prediction of damping force characteristics. Damping force of the proposed MR damper are calculated with respect to piston velocity and input current. In addition, investigation on damping force characteristics is carried out according to number of additional flow path and excellence of the proposed MR damper is demonstrated.

Response and control of jacket structure with magneto-rheological damper at multiple locations/combinations

  • Syed, Khaja A.A.;Kumar, Deepak
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.201-221
    • /
    • 2018
  • In this paper a comprehensive study for the structural control of Jacket platform with Magneto-Rheological (MR) damper is presented. The control is implemented as a closed loop feedback of the applied voltage in the MR Damper using fuzzy logic. Nine cases of combinations with MR damper are presented to complete the work. The selection of the MR damper (RD 1005-3) is based on the operating parameters (i.e., the range of frequency and displacement). Bingham model is used to obtain the control forces. The damping co-efficient of the model is obtained using empirical relationship between the voltage in the MR damper and input velocity from the structural members. The force acting on the structure is obtained from Morison equation using P-M spectrum. The results show that the reliable control was obtained when there was a continuous connection of multiple MR dampers with the lower levels of the structure. Independent MR dampers at different levels provided control within a range, while the MR dampers placed at alternate positions gave very high control.

구조물의 진동제어를 위한 MR-damper의 최적 제어력 산정 (Calculating a MR Damper's Optimal Capacity for a Control of Structural Vibration)

  • 허광희;전승곤;김충길;전준용;이진옥;서상구
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.163-169
    • /
    • 2016
  • In the case where a MR-damper is employed for vibration control, it is important to decide on how much control capacity should be assigned to it against structural capacities (strength and load, etc). This paper aims to present a MR-damper's control capacity suitable for the capacities of the structure which needs to be controlled. First, a two span bridge was built equipped with a MR-damper, which constitutes a two-span MR-damper control system. Then, inflicting an earthquake load on the system, a basic experiment was performed for vibration control, and a simulation was also carried out reflecting specific control conditions such as MR-damper and rubber bearing. The comparison of the results against each other proved their validity. Then, in order to calculate an optimal control capacity of the MR-damper, structural capacity was divided into eleven cases in total and simulated. For each case, an additional load of 30 KN was inflicted everytime, thereby increasingly strengthening structural capacity. As a result of the study, it was found that the control capacity of MR-damper of 30 KN was safely secured only with lumped mass of more than 150 KN(case 6). Therefore, it is concluded the MR-damper showed the best performance of control when it exerted its capacity at around 20% of structural capacity.