• Title/Summary/Keyword: MR comparative study

Search Result 52, Processing Time 0.09 seconds

Analysis of Actual Cross-Sectional Area During Scanning According to MRI Bore Size (MRI 보어 구경에 따른 검사 시 실효 단면적 분석)

  • Jeong, Hyunkeun;Jeong, Hyundo;Kim, Seongho;Jeon, Mincheol;Yoo, Sejong;Ko, Hyuncheol;Cho, Yonghyun
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.219-227
    • /
    • 2020
  • In this study, we tried to quantify the actual cross-sectional area inside the bore when scanning by the MRI system with various bore sizes. To this end, a comparative analysis was conducted by both of blueprint of each MRI equipment and actual measurement in the field. As a result of analysis, ACSA(Actual Cross-Sectional Area) in Ingenia CX, Elition X, uMR 780, Omega, Vida, Lumina, Architect, Premier is recorded as 171230, 232150, 242100, 309332, 230760, 230760, 229380 and 235990 ㎟, respectively ACSA% was 60.6, 60.3, 73.0, 70.0, 60.0, 60.0, 59.6, and 61,3%. In addition, DTB (Distance from Table top to Bore top) recorded 400, 407, 445, 495, 405, 405, 405, 403, and 412 mm. Through this study, it was confirmed that there is a difference between the bore size according to each MRI system and the actual cross-sectional area during MRI scanning. Accordingly, if we consider the internal actual area just not bore size at the clinical site, useful diagnostic images can be obtained in the end with better convenience.

Comparison of Brain Activation Images Associated with Sexual Arousal Induced by Visual Stimulation and SP6 Acupuncture : fMRI at 3 Tesla (시각자극과 삼음교 자침으로 유발된 성적 흥분의 대뇌 활성화 영상의 비교 : 3 테슬라 기능적 자기공명영상법)

  • Choi, Nam-Gil;Han, Jae-Bok;Jang, Seong-Joo
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.183-194
    • /
    • 2009
  • Purpose : This study was performed not only to compare the brain activation regions associated with sexual arousal induced by visual stimulation and SP6 acupuncture, but also to evaluate its differential neuro-anatomical mechanism in healthy women using functional magnetic resonance imaging (fMRI) at 3 Tesla (T). Subjects and methods : A total of 21 healthy right-handed female volunteers (mean age 22 years, range 19 to 32) underwent fMRI on a 3T MR scanner. The stimulation paradigm for sexual arousal consisted of two alternating periods of rest and activation. It began with a 1-minute rest period, 3 minutes of stimulation with either of an erotic video film or SP6 acupuncture, followed by 1-minute rest. In addition, a comparative study on the brain activation patterns between an acupoint and a shampoint nearby GB37 was performed. The fMRI data were obtained from 20 slices parallel to the AC-PC line on an axial plane, giving a total of 2,000 images. The mean activation maps were constructed and analyzed by using the statistical parametric mapping (SPM99) software. Results : As comparison with the shampoint, the acupoint showed 5 times and 2 times higher activities in the neocortex and limbic system, respectively. Note that brain activation in response to stimulation with the shampoint was not observed in the regions including the HTHL in the diencephalon, GLO and AMYG in the basal ganglia, and SMG in the parietal lobe. In the comparative study of visual stimulation vs. SP6 acupuncture, the mean activation ratio of stimulus was not significantly different to each other in both the neocortex and the limbic system (p < 0.05). The mean activities induced by both stimuli were not significantly different in the neocortex, whereas the acupunctural stimulation showed higher activity in the limbic system (p < 0.05). Conclusions : This study compared the differential brain activation patterns and the neural mechanisms for sexual arousal, which were induced by visual stimulation and SP6 acupuncture by using 3T fMRI. These findings will be useful to understand the theory of traditional acupuncture and acupoint channel in scientific point of view.

  • PDF

Comparative Investigation of Single Voxel Magnetic Resonance Spectroscopy and Dynamic Contrast Enhancement MR Imaging in Differentiation of Benign and Malignant Breast Lesions in a Sample of Iranian Women

  • Faeghi, Fariborz;Baniasadipour, Banafsheh;Jalalshokouhi, Jalal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8335-8338
    • /
    • 2016
  • Purpose: To make a comparison of single voxel magnetic resonance spectroscopy (SV-MRS) and dynamic contrast enhancement (DCE) MRI for differentiation of benign and malignant breast lesions in a sample of Iranian women. Materials and Methods: A total of 30 women with abnormal breast lesions detected in mammography, ultrasound, or clinical breast exam were examined with DCE and SV-MRS. tCho (total choline) resonance in MRS spectra was qualitatively evaluated and detection of a visible tCho peak at 3.2 ppm was defined as a positive finding for malignancy. Different types of DCE curves were persistent (type 1), plateau (type 2), and washout (type 3). At first, lesions were classified according to choline findings and types of DCE curve, finally being compared to pathological results as the standard reference. Results: this study included 19 patients with malignant lesions and 11 patients with benign ones. While 63.6 % of benign lesions (7 of 11) showed type 1 DCE curves and 36.4% (4 of 11) showed type 2, 57.9% (11of 19) of malignant lesions were type 3 and 42.1% (8 of 19) type 2. Choline peaks were detected in 18 of 19 malignant lesions and in 3 of 11 benign counterparts. 1 malignant and 8 benign cases did not show any visible resonance at 3.2 ppm so SV-MRS featured 94.7% sensitivity, 72.7 % specificity and 86.7% accuracy.Conclusions: The present findings indicate that a combined approach using MRS and DCE MRI can improve the specificity of MRI for differentiation of benign and malignant breast lesions.

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF

Analysis of Image Distortion on Magnetic Resonance Diffusion Weighted Imaging

  • Cho, Ah Rang;Lee, Hae Kag;Yoo, Heung Joon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • The purpose of this study is to improve diagnostic efficiency of clinical study by setting up guidelines for more precise examination with a comparative analysis of signal intensity and image distortion depending on the location of X axial of object when performing magnetic resonance diffusion weighted imaging (MR DWI) examination. We arranged the self-produced phantom with a 45 mm of interval from the core of 44 regent bottles that have a 16 mm of external diameter and 55 mm of height, and were placed in 4 rows and 11 columns in an acrylic box. We also filled up water and margarine to portrait the fat. We used 3T Skyra and 18 Channel Body array coil. We also obtained the coronal image with the direction of RL (right to left) by using scan slice thinkness 3 mm, slice gap: 0mm, field of view (FOV): $450{\times}450mm^2$, repetition time (TR): 5000 ms, echo time (TE): 73/118 ms, Matrix: $126{\times}126$, slice number: 15, scan time: 9 min 45sec, number of excitations (NEX): 3, phase encoding as a diffusion-weighted imaging parameter. In order to scan, we set b-value to $0s/mm^2$, $400s/mm^2$, and $1,400s/mm^2$, and obtained T2 fat saturation image. Then we did a comparative analysis on the differences between image distortion and signal intensity depending on the location of X axial based on iso-center of patient's table. We used "Image J" as a comparative analysis programme, and used SPSS v18.0 as a statistic programme. There was not much difference between image distortion and signal intensity on fat and water from T2 fat saturation image. But, the average value depends on the location of X axial was statistically significant (p < 0.05). From DWI image, when b-value was 0 and 400, there was no significant difference up to $2^{nd}$ columns right to left from the core of patient's table, however, there was a decline in signal intensity and image distortion from the $3^{rd}$ columns and they started to decrease rapidly at the $4^{th}$ columns. When b-value was 1,400, there was not much difference between the $1^{st}$ row right to left from the core of patient's table, however, image distortion started to appear from the $2^{nd}$ columns with no change in signal intensity, the signal was getting decreased from the $3^{rd}$ columns, and both signal intensity and image distortion started to get decreased rapidly. At this moment, the reagent bottles from outside out of 11 reagent bottles were not verified from the image, and only 9 reagent bottles were verified. However, it was not possible to verify anything from the $5^{th}$ columns. But, the average value depends on the location of X axial was statistically significant. On T2 FS image, there was a significant decline in image distortion and signal intensity over 180mm from the core of patient's table. On diffusion-weighted image, there was a significant decline in image distortion and signal intensity over 90 mm, and they became unverifiable over 180 mm. Therefore, we should make an image that has a diagnostic value from examinations that are hard to locate patient's position.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

Comparative Study between ZOOMit and Conventional Intravoxel Incoherent Motion MRI for Assessing Parotid Gland Abnormalities in Patients with Early- or Mid-Stage Sjögren's Syndrome

  • Qing-Qing Zhou;Wei Zhang;Yu-Sheng Yu;Hong-Yan Li;Liang Wei;Xue-Song Li;Zhen-Zhen He;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.455-465
    • /
    • 2022
  • Objective: To compare the reproducibility and performance of quantitative metrics between ZOOMit and conventional intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) in the diagnosis of early- and mid-stage Sjögren's syndrome (SS). Materials and Methods: Twenty-two patients (mean age ± standard deviation, 52.0 ± 10.8 years; male:female, 2:20) with early- or mid-stage SS and 20 healthy controls (46.9 ± 14.6 years; male:female, 7:13) were prospectively enrolled in our study. ZOOMit IVIM and conventional IVIM MRI were performed simultaneously in all individuals using a 3T scanner. Quantitative IVIM parameters - including tissue diffusivity (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) - inter- and intra-observer reproducibility in measuring these parameters, and their ability to distinguish patients with SS from healthy individuals were assessed and compared between ZOOMit IVIM and conventional IVIM methods, appropriately. MR gland nodular grade (MRG) was also examined. Results: Inter- and intra-observer reproducibility was better with ZOOMit imaging than with conventional IVIM imaging (ZOOMit vs. conventional, intraclass correlation coefficient of 0.897-0.941 vs. 0.667-0.782 for inter-observer reproducibility and 0.891-0.968 vs. 0.814-0.853 for intra-observer reproducibility). Significant differences in ZOOMit f, ZOOMit D*, D*, conventional D*, and MRG between patients with SS and healthy individuals (all p < 0.05) were observed. ZOOMit D* outperformed conventional D* in diagnosing early- and mid-stage SS (area under receiver operating curve, 0.867 and 0.658, respectively; p = 0.002). The combination of ZOOMit D*, MRG, and ZOOMit f as a new diagnostic index for SS, increased diagnostic area under the curve to 0.961, which was higher than that of any single parameter (all p < 0.01). Conclusion: Considering its better reproducibility and performance, ZOOMit IVIM may be preferred over conventional IVIM MRI, and may subsequently improve the ability to diagnose early- and mid-stage SS.

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D T2* weighted Technique and Fat Suppressed 3D SPGR Technique when Examining MRI for Knee Joint Cartilage Assesment (슬관절 연골 평가를 위한 자기공명영상 검사 시 지방 신호 억제 3D T2* Weighted 기법과 지방 신호 억제 3D SPGR 기법의 비교 및 유용성 평가)

  • Kang, Sung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.219-225
    • /
    • 2016
  • In this study, for assessment of degenerative knee joint cartilage disease we acquired images by fat suppressed 3D spoiled gradient recalled (SPGR) and fat suppressed 3D $T2^*$ weighted imaging techniques. To do a quantitative evaluation, the knee joint cartilage was divided into medial femoral cartilage (MFC), medial tibial cartilage (MTC), lateral femoral cartilage (LFC), lateral femoral cartilage (LFC) and patella cartilage (Pat) to measure their respective signal intensity values, signal-to-noise ratio, and contrast-to-noise ratio. As for the measured values, statistical significance between two techniques was verified by using Mann-Whitney U-Test. To do a qualitative evaluation, two radiologists have examined images by techniques after which image artifact, cartilage surface, tissue contrast, and depiction of lesion distinguishing were evaluated based on 4-point scaling (1: bad, 2: appropriate, 3: good, 4: excellent), and based on the result, statistical significance was verified by using Kappa-value Test. 3.0T MR system and HD T/R 8ch knee array coil were used to acquire images. As a result of a quantitative analysis, based on SNR values measured by using two imaging techniques, MFC, LFC, LTC, and Pat showed statistical significance (p < 0.05), but MTC did not (p > 0.05). As a result of verifying statistical significance for measured CNR value, MFC, LFC, and Pat showed statistical significance (p < 0.05), while MTC and LTC did not show statistical significance (p > 0.05). As a result of a qualitative analysis, by comparing mean values for evaluated image items, 3D $T2^*$ weighted Image has indicated a slightly higher value. As for conformance verification between the two observers by using Kappa-value test, all evaluated items have indicated statistically significant results (p < 0.05). 3D $T2^*$ weighted technique holds a clinical value equal to or superior to 3D SPGR technique with respect to evaluating images, such as distinguishing knee joint cartilages, comparing nearby tissues contrast, and distinguishing lesions.

Evaluation of Usefulness of SPIO (Superparamagnetic iron oxide) Contrast Agent in MRCP (Magnetic resonance cholangiopancreatography) (자기공명 담도췌장조영술에서의 SPIO 조영제의 유용성 평가)

  • Hong, In-Sik;Lee, Hae-Kak;Cho, Jae-Hwan;Kim, Hyeon-Ju;Jang, Hyun-Cheol;Park, Cheol-Soo;Lee, Sun-Yeob;Goo, Eun-Hoe;Dong, Kyung-Rae;Cho, Moo-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of SPIO contrast agent in Magnetic Resonance Cholangiopancreatography (MRCP) by performing a quantitative comparative analysis in patients undergoing MRCP for gallbladder stones with and without oral injection of SPIO (Superparamagnetic iron oxide) contrast agent. The subjects were 36 patients undergoing MRCP for suspected gallbladder stones between January 2009 and February 2010 and they were divided into halves to compare the two groups of with and without SPIO agent. For each subject in both the injected and non-injected group, T2-weighted images on a 1.5T MR scanner were obtained, using both the breath-holding and respiratory-triggered methods, respectively. The following regions were measured; for breath-hold T2-weighted images, the measurement regions were located at the central part of the gallbladder, and the areas 15 mm away from its center, toward the front and back, respectively, which were chosen to include surrounding tissues, while for respiratory-triggered T2-weighted images, at the central part of the gallbladder, and segment 5 and 6 of liver. In a quantitative analysis, average signal to noise ratio (SNR) in each of regions of interest (ROI) for each group were calculated and then average contrast to noise ratio (CNR) in each of ROI were obtained by using the SNR in the gallbladder as the basis to compare and analyze the values between the two groups. The CNR were higher for the injected group in those regions.

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.