• 제목/요약/키워드: MR Damper

검색결과 378건 처리시간 0.024초

사격충격력 저감을 위한 연식주퇴계의 제어 (Control of a Soft Recoil System for Recoil Force Reduction)

  • 신철봉;배재성;황재혁;강국정;안상태;한태호
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.764-774
    • /
    • 2008
  • A fire-out-of-battery(FOOB) mechanism, which is a new recoil technology, can reduce dramatically the level of a recoil force compared to the conventional recoil system. The FOOB mechanism pre-accelerates the recoil parts in direction opposite of conventional recoil before ignition. This momentum of the recoil parts due to pre-acceleration can reduce the firing impulse. In this paper, the dynamics of the recoil system with this FOOB mechanism is formulated and simulated numerically. The results of the simulation show that the FOOB system can reduce the recoil force and stroke compared to the conventional system under normal condition. When the fault modes happen, the FOOB system may not perform well and may be damaged seriously due to excessive recoil force and stroke. Hence, the control of the fault modes is necessary to achieve the normal operation of the FOOB system. The results that an additional MR damper enables the FOOB system to perform well under all firing condition.

스마트 최상층 면진시스템의 중약진지역 적용성 평가 (Investigation of Adaptability of Smart Top-Story Isolation System to Structures in Regions of Low-to-Moderate Seismicity)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.71-80
    • /
    • 2012
  • Because a smart isolation system cannot be used as a base isolation system for tall buildings, top-story or mid-story isolation systems are required. In this study, adaptability of a smart top-story isolation system for reduction of seismic responses of tall buildings in regions of low-to-moderate seismicity has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions in comparison with a passive top-story isolation system.

스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계 (Integrated Optimal Design of Smart Connective Control System and Connected Buildings)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

지도학습과 강화학습을 이용한 준능동 중간층면진시스템의 최적설계 (Optimal Design of Semi-Active Mid-Story Isolation System using Supervised Learning and Reinforcement Learning)

  • 강주원;김현수
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.73-80
    • /
    • 2021
  • A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.

사장교를 위한 LRB-기반 복합 기초격리 시스템 (LRB-based hybrid base isolation systems for cable-stayed bridges)

  • 정형조;박규식;;이인원
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.63-76
    • /
    • 2004
  • 사장교에 발생하는 지진에 의한 진동을 감소시키기 위해 추가적인 능동/반능동 제어장치를 부착한 LRB-기반 복합 기초격리 시스템에 대한 논문이다. 복합 기초격리 시스템은 제어장치가 다중으로 작동하기 때문에 LRB가 설치된 교량 시스템과 같은 수동형 기초격리 시스템에 비해 제어 성능이 뛰어나다. 본 논문에서는, LQG 알고리듬에 의해 제어되는 능동형 유압식 가력기와 clipped 최적제어에 의해 제어되는 반능동형 자기유변 유체 (MR) 감쇠기를 추가적인 제어장치로 고려하여 추가적인 응답 감소 효과를 검토하였다. 이를 위해, 미국토목학회의 1단계 벤치마크 사장교에 LRB를 설치한 교량을 고려하였다. 수치해석 결과를 통해, 모든 LRB-기반 복합 기초격리시스템이 구조물의 응답을 효과적으로 감소시킴을 확인하였다. 또한, MR 감쇠기를 채택한 복합 기초격리 시스템은 구조물 강성의 불확실성에 대해 강인성을 보였지만 유압식 가력기를 채택한 경우에는 강인성이 부족함을 알 수 있었다. 따라서, 반능동형 추가 제어장치를 채택한 복합 기초격리 시스템의 대형 토목구조물에 대한 적용가능성이 제어 성능 및 강인성 면에서 분명하게 검증되었다.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가 (Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

다중재난하중을 받는 인접건물의 연결제어에 대한 연구 (Research on Coupling Control of Adjacent Buildings under Multiple Hazards)

  • 곽신영;김현수
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.36-41
    • /
    • 2016
  • 본 논문에서는 다중재난하중을 받는 인접건물의 동적응답에 대한 연결제어기법의 제어성능을 수치해석적인 방법을 사용하여 검토하였다. 이를 위하여 강진지역인 LA 지역의 지진하중과 강풍지역인 찰스턴 지역의 풍하중을 사용하여 수치해석을 수행하였다. 인공 지진하중과 풍하중은 ASCE 7-10을 바탕으로 생성하였고 인공지진하중은 SIMQKE을 사용하여 작성하였으며 인공풍하중은 Kaimal Spectrum을 이용하여 작성하였다. 10층 및 20층의 인접구조물을 예제구조물로 사용하였고 비선형 이력댐퍼를 이용하여 연결제어를 하였다. 비선형 이력댐퍼를 간편하게 모형화하기 위하여 주로 MR 감쇠기를 모형화 할 때 사용하는 Bouc-Wen 모델을 사용하였다. 비선형 이력댐퍼는 10층에만 설치한 경우와 1층에서 10층까지 모든 층에 설치한 경우에 대해서 고려하였다. 각 층에 사용하는 댐퍼의 개수를 증가시킨 파라메터 스터디를 수행하였고 지진하중 및 풍하중에 대한 최적의 성능을 보이는 설계안을 검토하였다. 수치해석결과 비선형 이력댐퍼를 이용한 연결제어를 통하여 다중재난 하중에 대한 인접건물의 동적응답을 효과적으로 저감시킬 수 있었고 각각의 재난하중에 대한 최적설계결과가 다르게 나타나는 것을 확인할 수 있었다. 또한 연결되는 감쇠기를 과도하게 사용하면 오히려 구조물의 응답을 증가시킬 수 있으므로 주의 깊은 설계과정이 필요함을 알 수 있었다.