• Title/Summary/Keyword: MQW

Search Result 138, Processing Time 0.024 seconds

ZnO 박막을 이용한 광재료 개발 현황

  • 서효원;정연식;최원국
    • Electrical & Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2004
  • 1996년 GaN와 near band edge emission(NBE) 및 yellow deep-defect level emission의 발광 기구가 ZnO의 greene mission과 매우 유사하다는 점이 발견된 이 후[1,2], II-VIZnO반도체에 대한 광학적 성질에 많은 관심이 집중되기 시작하였다. 1960년대 C. Klingshirin[3]에 의해 bulk ZnO의 exciton luminescence가 관측된 이래로, 1980년대 후반부터 적층 박막 성장 법들이 급속도로 발전을 하여 오고 1988 S. Bethke등이 CVD로 성장한 ZnO의 NBE emission에 관심을 갖기 시작하였고[4], 1996년 2K에서 GaN, ZnO사이의 유사한 발광기구가 알려졌고[5], 도호쿠 및 일본 공업대에서 ZnO의 적층 성장 및 상온에서 defect에 기인한 emission이 없는 깨끗한 PL 의 관측, 상온 lasing, 육방정계 결정 구조에서 비롯된 6-fold symmetry PL 등이 보고되기 시작하였다. [6-8] 2000년에 들어서면서 MgO와 CdO와의 solid solution에 의한 밴드갭을 2.6-4.2 eV 까지 조절하는 가능성이 보고되었고 이를 이용한 ZnO/MgZnO MQW 구조에 대한 연구도 병행되었다.(중략)

  • PDF

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃

  • Ryu, Guen-Hwan;Seo, Dong-Joo;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.468-473
    • /
    • 2018
  • We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$. When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$, the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.

Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures (InGaAs/InAlAs 양자우물구조의 발광특성에 대한 In0.4Al0.6As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.449-455
    • /
    • 2011
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.4}Al_{0.6}As$ buffer layer have been investigated by using photoluminescence (PL) and time-resolved PL measurements. A 1-${\mu}m$-thick $In_{0.4}Al_{0.6}As$ buffer layers were deposited at various temperatures from $320^{\circ}C$ to $580^{\circ}C$ on a 500-nm-thick GaAs layer, and then 1-${\mu}m$-thick $In_{0.5}Al_{0.5}As$ layers were deposited at $480^{\circ}C$, followed by the deposition of the InGaAs/InAlAs MQWs. In order to study the effects of $In_{0.4}Al_{0.6}As$ layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of $In_{0.4}Al_{0.6}As$ buffer layer. The MQWs consist of three $In_{0.5}Al_{0.5}As$ wells with different well thicknesses (2.5-nm, 4.0-nm, and 6.0-nm-thick) and 10-nm-thick $In_{0.5}Al_{0.5}As$ barriers. The PL peaks from 4-nm QW and 6-nm QW were observed. However, for the MQWs on the $In_{0.4}Al_{0.6}As$ layer grown by using the largest growth temperature variation (320-$580^{\circ}C$), the PL spectrum only showed a PL peak from 6-nm QW. The carrier decay times in the 4-nm QW and 6-nm QW were measured from the emission wavelength dependence of PL decay. These results indicated that the growth temperatures of $In_{0.4}Al_{0.6}As$ layer affect the optical properties of the MQWs.

Phenomenological Study on Crystal Phase Separation in InGaN/GaN Multiple Quantum Well Structures (InGaN/GaN 다중 양자우물 구조에서의 결정상 분리 현상 연구)

  • Lee, S.J.;Kim, J.O.;Kim, C.S.;Noh, S.K.;Lim, K.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • We have investigated photoluminescence(PL) spectra of four $In_xGa_{1-x}N(x=0.15)/GaN$ multiple quantum well(MQW) structures with different well widths in order to study a phenomenon on crystal phase separation. The asymmetic behavior of PL spectra becomes stronger with increase of the well width from 1.5 nm to 6.0 nm, which indicates dual-peak nature. Analyzing the dual-peak fit PL spectra, we have observed that the intensity of low-energy shoulder peak rapidly becomes stronger, compared to that of high-energy peak corresponding to a transition in InGaN QW. It suggests that InGaN QW has two phases with tiny different In compositions, and that In-rich(InN-like) phase forms more and more relatively than stoichiometric InGaN(x=0.15) phase by the InN phase separation mechanism as the QW width increases. PL spectrum of 6.0-nm sample shows an additional peak at low-energy lesion(${\sim}2.0\;eV$) whose energy position is almost the same as a defect band of yellow luminescence frequently observed in GaN epilayers. It may be due to a defect resulted from In deficiency formed with development of the phase separation.

Electro-Optical Characteristics and Analysis of 1×1 mm2 Large-Area InGaN/GaN Green LED (1×1 mm2 대면적 녹색 LED의 전기 광학적 특성 분석)

  • Jang, L.W.;Jo, D.S.;Jeon, J.W.;Ahn, Tae-Young;Park, M.J.;Ahn, B.J.;Song, J.H.;Kwak, J.S.;Kim, Jin-Soo;Lee, I.H.;Ahn, H.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.288-293
    • /
    • 2011
  • We investigated the effects of piezoelectric field on the electro-absorption characteristics in InGaN/GaN multiple-quantum well (MQW) green light emitting diodes (LED). Double crystal X-ray diffraction measurement was performed to study the crystalline property and indium (In) composition in the MQW active layer. To measure the electro-luminescence and electro-reflectance (ER) spectroscopy, we fabricated the $1{\times}1\;mm^2$ large-area green LED chip. The piezoelectric field inside the LED structure was evaluated from the Vcomp in active layer by the ER spectra. Finally, we analyzed the electro-absorption characteristics of the green LED by using the photo-current spectroscopy.

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF

Study of Temperature Uniformity Improvement of Inductive Heating in MOCVD Systems to Deposit White LED (백색 LED 증착용 MOCVD 장치에서 유도가열을 이용한 기판의 온도 균일도 향상에 관한 연구)

  • Hong, Kwang-Ki;Yang, Won-Kyun;Joo, Jung-Hoon;Lee, Seung-Ho;Lee, Tae-Wan
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.304-308
    • /
    • 2010
  • Deposition temperature uniformity of GaN based MQW (multiple quantum well) layers is an important key which affects the wavelength uniformity of white LEDs. Temperature uniformity was assessed by infrared images for both cases of a static and a rotating susceptor. Rotating the susceptor at 2.5 rpm over the induction heater gave 4.3% of temperature non-uniformity. Temperature distribution of the graphite susceptor over the induction heater was numerically modelled and agreed with experimental results.

An Improved Theoretical Model to Explain Electronic and Optical Properties of p-Type GaAs/AlGaAs Superlattices for Multi-Wavelength Normal Incidence Photodetectors

  • Kim, Byoung-Whi;Choi, Eun-Chang;Park, Kwon-Chul;Kang, Seok-Youl
    • ETRI Journal
    • /
    • v.18 no.4
    • /
    • pp.315-338
    • /
    • 1997
  • We extend our previous theoretical analysis of electronic and optical properties of p-type quantum well structures based on the two heavy- and light-hole system to include all the three valence bands. These theories are then used to clarify the origin of the normal incidence absorption and photo current at photon wavelengths of 2 - 3 ${\mu}m$, which was observed in addition to the absorption around 8 ${\mu}m$ by a recent experimental investigation with heavily doped p-type GaAs/AlGaAs multi-quantum well (MQW) structures. In the theoretical analysis, the Hartree and exchange-correlation many-body interactions are taken into account within one-particle local density approximation, and it is shown that normal incidence absorption occurs in two wavelength regions over the transition energy range higher than barrier height for p-type GaAs/AlGaAs superlattices with well doping of $2{\times}10^{19}\;cm^{-3}$; one region has broad absorption peaks with coefficients of about 5000 $cm^{-1}$ around 8 ${\mu}m$, and the other has two rather sharp peaks at 2.7 ${\mu}m$ and 3.4 ${\mu}m$ with 1800 $cm^{-1}$ and 1300 $cm^{-1}$, respectively. The result indicates that the theory explains the experimental observation well, as the theoretical and experimental results are in close agreement in general absorption features.

  • PDF

A Simple Analytical Model for the Study of Optical Bistability Using Multiple Quantum Well p-i-n Diode Structure

  • Jit, S.;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.63-73
    • /
    • 2004
  • A simple analytical model has been presented for the study of the optical bistability using a $GaAs-Al_{0.32}Ga_{0.68}As$ multiple quantum well (MQW) p-i-n diode structure. The calculation of the optical absorption is based on a semi-emperical model which is accurately valid for a range of wells between 5 and 20 nm and the electric field F< 200kV/cm . The electric field dependent analytical expression for the responsivity is presented. An attempt has been made to derive the analytical relationship between the incident optical power ( $(P_{in})$ ) and the voltage V across the device when the diode is reverse biased by a power supply in series with a load resistor. The relationship between $P_{in}$ and $P_{out}$ (i.e. transmitted optical power) is also presented. Numerical results are presented for a typical case of well size $L_Z=10.5nm,\;barrier\;size\;L_B=9.5nm$ optical wave length l = 851.7nm and electric field F? 100kV/cm. It has been shown that for the values of $P_{in}$ within certain range, the device changes its state in such a way that corresponding to every value of $P_{in}$ , two stable states and one unstable state of V as well as of $P_{out}$ are obtained which shows the optically controlled bistable nature of the device.

PSPICE Modeling and Characterization of Optical Transmitter with 1550 nm InGaAsP LDs (1550 nm InGaAsP LD 광송신회로의 PSPICE 모델 및 광변조 특성 해석)

  • Goo, Yu-Rim;Kim, Jong-Dae;Yi, Jong-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The PSPICE equivalent circuit elements of a 1550 nm InGaAsP laser diode were derived by using multi-level rate equations. The device parameters were extracted by using a self-consistent numerical method for the optical gain properties of the MQW active regions. The resulting equivalent circuit model is also applied to an actual optical transmitter, and its PSPICE simulation results show good agreement with the measured results once the parasitic capacitance due to the packaging is taken into account.