• Title/Summary/Keyword: MPSN

Search Result 3, Processing Time 0.017 seconds

The Characteristics of Poly(acrylamide)-SiOx Nanoparticles Prepared by Graft-polymerizaton (그라프트 중합에 의해 만들어진 폴리아크릴아마이드-실리카 나노 입자의 특성)

  • Min, Jun Ho;Min, Seong Kee
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Methacryloxypropyltrimethoxysilane (MPTMS) was used for the surface modification of silica nanoparticles in the toluene dispersion system for 8 h (MPSN). Then, methacryloxypropyl-modified silica nanoparticles were successfully prepared by solutioun polymerization in the ethanol solution at $60^{\circ}C$ for 14 h with adding AIBN initiator. The modification of ultra-fine particles (SiOx-PAA nanospheres) was investigated via EA, XPS, FTIR, TGA, SEM and TEM. The mean diameter of the bare silica nanoparticles, MPSN and SiOx-PAA monodisperse nanoparticles was about 25, 30 and 35 nm, respectively.

Characterizations of Modified Silica Nanoparticles(II) ; Preparation and Application of Silica Nanoparticles as a Environmentally Filler

  • Min, Seong-Kee;Bae, Deok-Kwun;Park, Sang-Bo;Yoo, Seong-Il;Lee, Won-Ki;Park, Chan-Young;Seul, Soo-Duk
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.433-438
    • /
    • 2012
  • A chemical process involves polymerization within microspheres, whereas a physical process involves the dispersion of polymer in a nonsolvent. Nano-sized monodisperse microspheres are usually prepared by chemical processes such as water-based emulsions, seed suspension polymerization, nonaqueous dispersion polymerization, and precipitation polymerizations. Polymerization was performed in a four-necked, separate-type flask equipped with a stirrer, a condenser, a nitrogen inlet, and a rubber stopper for adding the initiator with a syringe. Nitrogen was bubbled through the mixture of reagents for 1 hr. before elevating the temperature. Functional silane (3-mercaptopropyl)trimethoxysilane (MPTMS) was used for the modification of silica nanoparticles and the self-assembled monolayers obtained were characterized by X-ray photoelectron spectroscopy (XPS), laser scattering system (LSS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), elemental analysis (EA), and thermogravimetric analysis (TGA). In addition, polymer microspheres were polymerized by radical polymerization of ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) and acrylamide monomer via precipitation polymerization; then, their characteristics were investigated. From the elemental analysis results, it can be concluded that the conversion rate of acrylamide monomer was 93% and that polyacrylamide grafted to MPSN nanospheres via the radical precipitation polymerization with AAm in ethanol solvent. The microspheres were successfully polymerized by the 'graft from' method.

Characterizations of Modified Silica Nanoparticles(I)

  • Min, Seong-Kee;Park, Chan-Young;Lee, Won-Ki;Seul, Soo-Duk
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.275-279
    • /
    • 2012
  • (3-mercaptopropyl)trimethoxysilane (MPTMS) was used as a silylation agent, and modified silica nanoparticles were prepared by solution polymerization. 2.0 g of silica nanoparticles, 150 ml of toluene, and 20 ml of MPTMS were put into a 300 ml flask, and these mixtures were dispersed with ultrasonic vibration for 60 min. 0.2 g of hydroquinone as an inhibitor and 1 to 2 drops of 2,6-dimethylpyridine as a catalyst were added into the mixture. The mixture was then stirred with a magnetic stirrer for 8 hrs. at room temperature. After the reaction, the mixture was centrifuged for 1 hr. at 6000rpm. After precipitation, 150 ml of ethanol was added, and ultrasonic vibration was applied for 30 min. After the ultrasonic vibration, centrifugation was carried out again for 1 hr. at 6000rpm. Organo-modification of silica nanoparticles with a ${\gamma}$-methacryloxypropyl functional group was successfully achieved by solution polymerization in the ethanol solution. The characteristics of the ${\gamma}$-mercaptopropyl modified silica nanoparticles (MPSN) were examined using X-ray photoelectron spectroscopy (XPS, THERMO VG SCIENTIFIC, MultiLab 2000), a laser scattering system (LSS, TOPCON Co., GLS-1000), Fourier transform infrared spectroscopy (FTIR, JASCO INTERNATIONL CO., FT/IR-4200), scanning electron microscopy (SEM, HITACHI, S-2400), an elemental analysis (EA, Elementar, Vario macro/micro) and a thermogravimetric analysis (TGA, Perkin Elmer, TGA 7, Pyris 1). From the analysis results, the content of the methacryloxypropyl group was 0.98 mmol/g and the conversion rate of acrylamide monomer was 93%. SEM analysis results showed that the organo-modification of ultra-fine particles effectively prevented their agglomeration and improved their dispensability.