• 제목/요약/키워드: MPI engine

검색결과 56건 처리시간 0.027초

MPI Dual Injection 엔진의 온도 조건 변화에 따른 엔진 내부 유동 및 연료 거동 특성에 관한 연구 (Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Engine Temperature Condition in the MPI Dual Injection Engine)

  • 이승엽;정진택;박영준;유철호;김우태
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.210-219
    • /
    • 2014
  • The MPI dual injection engine can enhance the fuel efficiency and engine power. By using one injector per one intake port, MPI dual injection engine has an excellent fuel atomization and targeting injection. As the basic research for the MPI Dual injection engine design, this research was investigated in order to understand the characteristic of the in-cylinder flow and fuel behavior according to engine temperature condition and the fuel type in the MPI dual injection engines. The 3D unsteady CFD simulation for the MPI Dual injection engine was performed using STAR-CD. The engine operating condition was 2,000 rpm/WOT. The parameters for this study were fuel types, fuel temperatures and wall temperatures. As a result, the intake air amount, evaporated fuel in the cylinder and the fuel film on the wall were presented according to parameters that depend on the fuel properties and engine wall temperature. Also, the results were influenced by in-cylinder flow such as the intake flow, back flow and so on.

실험계획법에 의한 가솔린 GDI+MPI 엔진의 연비 및 성능향상 관점에서의 운전영역별 연료분사 전략에 관한 연구 (A Study of GDI+MPI Engine Operation Strategy Focusing on Fuel Economy and Full Load Performance using DOE)

  • 김도완;이승환;임종석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.42-49
    • /
    • 2014
  • The gasoline direct injection (GDI) system is considerably spreading in automotive market due to its advantages. Nevertheless, since GDI system emit higher particle matter (PM) due to its combustion characteristics, it is difficult to meet strengthened emission regulation in near future. For this reason, a combined GDI with MPI system, so-called, dual injection (DUI) system is being investigated as a supplemental measure for the GDI system. This paper focused on power and fuel consumption effect by injection mode strategy of DUI system in part load and idle engine operating condition. In this study, port fuel injectors are installed on 2.4 liters GDI production engine in order to realize DUI system. And, at each injection mode, DOE (design of experiment) method is used to optimize engine control parameters such as dual injection ratio, start of injection timing, end of injection timing, CAM position and so on. As a consequence, DUI mode shows slightly better or equivalent fuel efficiency compared to conventional GDI engine on 9 points fuel economy mode as well as MPI mode shows less fuel consumption than GDI mode during idle operation. Furthermore, DUI system shows improvement potential of maximum 2.0% fuel consumption and 1.1% performance compared to GDI system in WOT operating condition.

가솔린-에탄을 혼합연료 사용시의 MPI 가솔린 기관의 성능에 관한 연구 (A Study on the Performance of the MPI Gasoline Engine with Gasoline-Ethanol Blends)

  • 윤건식;신승한
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.92-102
    • /
    • 2001
  • The effect of ethanol-blending on the performances of the MPI gasoline engine was examined. The experiments were carried out for the stoichiometric conditions under MBT spark timing over various operating conditions. The blending rate of ethanol were determined as 10 to 30 percent according to the analysis of the properties of blended fuels. The engine with ethanol-blended fuels showed improved performances such as brake torque, brake power, brake thermal efficiency and exhaust emissions compared with those of pure gasoline over most operating conditions. Though the brake specific fuel consumption was increased by ethanol-blending due to their lower heating values, the increasing rates of the brake specific fuel consumption were limited to the half of the blending rates owing to the increase in the thermal efficiency.

  • PDF

가솔린기관의 연료분사 시기가 기관성능에 미치는 영향 (Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine)

  • 조규상;정연종;김원배
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

MPI 집합통신을 위한 프로세싱 노드 상태 기반의 메시지 전달 엔진 설계 (Design of Message Passing Engine Based on Processing Node Status for MPI Collective Communication)

  • 정원영;이용석
    • 한국통신학회논문지
    • /
    • 제37권8B호
    • /
    • pp.668-676
    • /
    • 2012
  • 본 논문은 MPI 집합 통신 함수가 처리 레벨 (transaction level) 에서 변환된다는 가정 하에 MPI 집합 통신 중 방송 (Broadcast), 확산 (Scatter), 취합 (Gather) 함수를 최적화한 알고리즘을 제안하였다. 또한 제안하는 알고리즘이 구동되는 MPI 전용 하드웨어 엔진을 설계하였으며, 이를 OCC-MPE (Optimized Collective Communication - Message Passing Engine) 라 명명하였다. OCC-MPE는 표준 송신 모드 (standard send mode)로 점대점 통신 (point-to-point communication) 을 하며, 집합 통신 중 가장 빈번하게 사용되는 방송, 취합, 확산을 제안하는 알고리즘에 의해 전송 순서를 결정한 후 통신하여 전체 통신 완료 시간을 단축시켰다. 제안한 알고리즘들의 성능을 측정하기 위하여 OCC-MPE를 SystemC 기반의 BFM(Bus Functional Model)을 제작하였다. SystemC 기반의 시뮬레이터를 통한 성능 평가 후에 VerilogHDL을 사용하여 제안하는 OCC-MPE를 포함한 MPSoC (Multi-Processor System on a Chip)를 설계하였다. TSMC 0.18 공정으로 합성한 결과 프로세싱 노드가 4개일 때 각 OCC-MPE가 차지하는 면적은 약 1978.95 이었다. 이는 전체 시스템에서 약 4.15%를 차지하므로 비교적 작은 면적을 차지함을 확인하였다. 본 논문에서 제안하는 OCC-MPE를 MPSoC에 내장하면, 비교적 작은 하드웨어 자원의 추가로 높은 성능향상을 얻을 수 있다.

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

Glow-Plug를 이용한 가솔린 연료의 조기증발 특성 실험 연구 (The Experimental Study of Early Fuel Evaporation Characteristics Gasoline Engine Using Glow-Plug)

  • 문영호;김진구;오영택
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2001
  • In order to reduce hydrocarbon emissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to reduce direct engine out hydrocarbon emissions, during cold starting and warm up process. Tjerefore many researchers have been attracted to develop an early fuel evaporator (EFE) by introducing a ceramic heater for a solution of engine out hydrocarbon emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has nat been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug for EFE.

  • PDF

초음파센서를 이용한 전자식 연료분사엔진의 흡기유량측정 (Air Flow Rate Measurement in Multi Point Injection Engine U sing Ultrasonic Sensors)

  • 박경석;김중일;고상근;노승탁;이종화
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.58-65
    • /
    • 1995
  • In this study an air flow meter was developed for MPI engine using ultrasonic sensors. The major characteristcs of the ultrasonic flow meter are high speed response, flow direction recognition and linear output. The air flow rate measurements were conducted at upstream of the throttle and intake manifold. The characteristics of the ultrasonic flow meter are compared with those of the Bosch hot wire flow meter at both steady and unsteady engine conditions.

  • PDF

천연가스-경유 혼소엔진의 특성연구 (A Study on the Characteristics of Dual Fuel Engine Fueled by Natural Gas and Diesel)

  • 김창업;오승묵
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.20-26
    • /
    • 2013
  • 본 연구에서는 기존 상용 12리터급 경유엔진을 베이스로, 천연가스 연료공급시스템을 추가함으로써 천연가스-경유연료를 동시에 사용하는 혼소엔진을 개발하였다. 전체적인 제어는 기존의 경유엔진 ECU를 이용하고, 추가적인 혼소 ECU를 제작하여 경유와 천연가스 연료가 최적으로 공급되도록 시스템을 구성하였다. 천연가스 연료는 MPI 방식으로 흡기메니홀드에 어뎁터를 이용하여 설치하였다. 혼소엔진의 실험결과, 경유엔진과 동등한 토크와 출력성능을 얻었으며, 배출가스 기준 또한 만족하였다. 전체적인 천연가스 연료 대체율은 70%이고, 주 사용영역에서는 약 76%의 대체율을 보였으며, 이로 인한 연료비용 절감효과는 전체 37% 및 주 사용영역에서는 40%를 얻었다.

4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구 (제1보) (Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines (First Paper))

  • 윤건식;우석근;서문진;신승한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1260-1271
    • /
    • 2001
  • The simulation program which predicts the gas behavior in a spark ignition engine has been developed and verified by the comparison with the experimental results foy the MPI engine, naturally aspirated and turbochared engines with a carburettor. First paper describes the calculations of the behavior of gas in the intake and exhaust system. The generalized method of characteristics including friction, heat transfer, area change and entropy gradients was used to analyse the pipe flow The constant-Pressure model was applied for the analysis of the flow through engine valved, and the constant-pressure perfect-mixing model was applied for the flow at manifold junction. The concept of the sudden area change was used for the muffler and catalytic convertor. Fer the plenum chamber in an MPI engine, constant-pressure model and constant-volume model were both examined. Through the comparison of predicted results with experiments, the simulation program was verified by showing good prediction of the behavior of IC engine qualitatively and quantitatively under wide range of operating conditions.

  • PDF