• Title/Summary/Keyword: MPC(model predictive controller)

Search Result 49, Processing Time 0.026 seconds

Harmonic Current Compensation Using Active Power Filter Based on Model Predictive Control Technology

  • Adam, Misbawu;Chen, Yuepeng;Deng, Xiangtian
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1889-1900
    • /
    • 2018
  • Harmonic current mitigation is vital in power distribution networks owing to the inflow of nonlinear loads, distributed generation, and renewable energy sources. The active power filter (APF) is the current electrical equipment that can dynamically compensate for harmonic distortion and eliminate asymmetrical loads. The compensation performance of an APF largely depends on the control strategy applied to the voltage source inverter (VSI). Model predictive control (MPC) has been demonstrated to be one of the effective control approaches to providing fast dynamic responses. This approach covers different types of power converters due to its several advantages, such as flexible control scheme and simple inclusion of nonlinearities and constraints within the controller design. In this study, a finite control set-MPC technique is proposed for the control of VSIs. Unlike conventional control methods, the proposed technique uses a discrete time model of the shunt APF to predict the future behavior of harmonic currents and determine the cost function so as to optimize current errors through the selection of appropriate switching states. The viability of this strategy in terms of harmonic mitigation is verified in MATLAB/Simulink. Experimental results show that MPC performs well in terms of reduced total harmonic distortion and is effective in APFs.

Nonlinear Model Predictive Control Using a Wiener model in a Continuous Polymerization Reactor

  • Jeong, Boong-Goon;Yoo, Kee-Youn;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.49-52
    • /
    • 1999
  • A subspace-based identification method of the Wiener model, consisting of a state-space linear block and a polynomial static nonlinearity at the output, is used to retrieve from discrete sample data the accurate information about the nonlinear dynamics. Wiener model may be incorporated into model predictive control (MPC) schemes in a unique way which effectively removes the nonlinearity from the control problem, preserving many of the favorable properties of linear MPC. The control performance is evaluated with simulation studies where the original first-principles model for a continuous MMA polymerization reactor is used as the true process while the identified Wiener model is used for the control purpose. On the basis of the simulation results, it is demonstrated that, despite the existence of unmeasured disturbance, the controller performed quite satisfactorily for the control of polymer qualities with constraints.

  • PDF

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

A Study of Performance Monitoring and Diagnosis Method for Multivariable MPC Systems

  • Lee, Seung-Yong;Youm, Seung-Hun;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2612-2616
    • /
    • 2003
  • Method for performance monitoring and diagnosis of a MIMO control system has been studied aiming at application to model predictive control (MPC) for industrial processes. The performance monitoring part is designed on the basis of the traditional SPC/SQC method. To meet the underlying premise of Schwart chart observation that the observed variable should be univariate and independent, the process variables are decorrelated temporally as well as spatially before monitoring. The diagnosis part was designed to identify the root of performance degradation among the controller, process, and disturbance. For this, a method to estimate the model-error and disturbance signal has been devised. The proposed methods were evaluated through numerical examples.

  • PDF

Sampled-Data MPC for Leader-Following of Multi-Mobile Robot System (다중모바일로봇의 리더추종을 위한 샘플데이타 모델예측제어)

  • Han, Seungyong;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.308-313
    • /
    • 2018
  • In this paper, we propose a sampled-data model predictive tracking control deign for leader-following control of multi-mobile robot system. The error dynamics of leader-following robots is modeled as a Linear Parameter Varying (LPV) model. Also, the Lyapunov function is presented to guarantee stability of the networked control system. Based on the stabilization condition using a quadratic Lyapunov function approach, model predictive sampled-data controller is designed. Finally, the leader-following control of multi mobile robots is simulated to show effectiveness of the proposed method.

Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes (외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

DEVELOPMENT OF A RECONFIGURABLE CONTROL FOR AN SP-100 SPACE REACTOR

  • Na Man-Gyun;Upadhyaya Belle R.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.63-74
    • /
    • 2007
  • In this paper, a reconfigurable controller consisting of a normal controller and a standby controller is designed to control the thermoelectric (TE) power in the SP-100 space reactor. The normal controller uses a model predictive control (MPC) method where the future TE power is predicted by using support vector regression. A genetic algorithm that can effectively accomplish multiple objectives is used to optimize the normal controller. The performance of the normal controller depends on the capability of predicting the future TE power. Therefore, if the prediction performance is degraded, the proportional-integral (PI) controller of the standby controller begins to work instead of the normal controller. Performance deterioration is detected by a sequential probability ratio test (SPRT). A lumped parameter simulation model of the SP-100 nuclear space reactor is used to verify the proposed reconfigurable controller. The results of numerical simulations to assess the performance of the proposed controller show that the TE generator power level controlled by the proposed reconfigurable controller could track the target power level effectively, satisfying all control constraints. Furthermore, the normal controller is automatically switched to the standby controller when the performance of the normal controller degrades.

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

MPC based Steering Control using a Probabilistic Prediction of Surrounding Vehicles for Automated Driving (전방향 주변 차량의 확률적 거동 예측을 이용한 모델 예측 제어 기법 기반 자율주행자동차 조향 제어)

  • Lee, Jun-Yung;Yi, Kyong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.199-209
    • /
    • 2015
  • This paper presents a model predictive control (MPC) approach to control the steering angle in an autonomous vehicle. In designing a highly automated driving control algorithm, one of the research issues is to cope with probable risky situations for enhancement of safety. While human drivers maneuver the vehicle, they determine the appropriate steering angle and acceleration based on the predictable trajectories of surrounding vehicles. Likewise, it is required that the automated driving control algorithm should determine the desired steering angle and acceleration with the consideration of not only the current states of surrounding vehicles but also their predictable behaviors. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, we define a safe driving envelope with the consideration of probable risky behaviors among the predicted probable behaviors of surrounding vehicles over a finite prediction horizon. For the control of the vehicle while satisfying the safe driving envelope and system constraints over a finite prediction horizon, a MPC approach is used in this research. At each time step, MPC based controller computes the desired steering angle to keep the subject vehicle in the safe driving envelope over a finite prediction horizon. Simulation and experimental tests show the effectiveness of the proposed algorithm.

Model Predictive Control of Three-Phase Inverter for Uninterruptible Power Supply Applications under a Hexagonal Input Constraint Region (육각형 입력제약 공간을 이용한 무정전 전원장치의 모델예측제어)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Using the classical cascade voltage control strategy, this paper proposes an analytical solution to an MPC (Model Predictive Control) problem with a hexagonal input constraint set for the inner-loop to regulate the output voltage of the UPS (Uninterruptible Power Supply). Focus is placed on how to deal with the hexagonal input constraint set without any approximation. Following the conventional cascade voltage control strategy, the PI (Proportional-Integral) controller is used in the outer-loop in order to regulate the output voltage. The simulation results illustrate that the capacitor voltage rapidly goes to its reference in a satisfactory manner while keeping other state variables bounded under an unexpected load changes.