• Title/Summary/Keyword: MOSFET rectifier

Search Result 64, Processing Time 0.026 seconds

Analysis of Operational Modes of Charger using Low-Voltage AC Current Source considering the Effects of Parasitic Components (기생성분을 고려한 저전압 AC 전류원 충전회로의 동작모드 해석)

  • Chung Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 2005
  • A new converter to transfer energy from a low-voltage AC current source to a battery is proposed. It is focused to find operational modes of the converter. The low-voltage AC current source is an equivalent of the piezoelectric generator, which converts the mechanical energy to the electric energy. The converter consists of a full-bridge MOSFET rectifier and a MOSFET boost converter in order to make the converter small and efficient. The operational principle and modes of the converter are investigated with the consideration of effects of the parasitic capacitances of MOSFETs and diode. The results are proved with simulation studies using PSIM and Pspice.

High-Power-Factor Boost Rectifier with a Passive Energy Recovery Snubber (에너지재생 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고;백승호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.428-432
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF

Clamp mode forward multi-resonant conveter with synchronous rectifier (동기 정류기를 이용한 클램프 모드 포워드 다중 공진형 컨버터)

  • 안강순;김희준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.112-120
    • /
    • 1997
  • The clamp mode (CM) forward zero voltage switching multi resonant converter (ZVS-MPC) with self-driven synchronous rectifier is studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET piecewise linear model and is compared with the loss at the conventional schottky diode rectification stage of th econverter. From the results of the analysis, it is known that the use fo MOSFETs as a synchronous rectifier reduces the loss at the rectification stage overthe whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validit of the analysis, we have built a 33W(3.3V/10A) CM forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. FRom the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

CMOS Rectifier for Wireless Power Transmission Using Multiplier Configuration (Multiplier 설정을 통한 무선 전력 전송 용 CMOS 정류 회로)

  • Jeong, Nam Hwi;Bae, Yoon Jae;Cho, Choon Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.56-62
    • /
    • 2013
  • We present a rectifier for wireless power transmission using multiplier configuration in layout for MOSFETs which works at 13.56 MHz, designed to fit in CMOS process where conventionally used diodes are replaced with the cross-coupled MOSFETs. Full bridge rectifier structure without comparators is employed to reduce current consumption and to be working up to higher frequency. Multiplier configuration designed in layout reduces time delay originated from parasitic series resistance and shunt capacitance at each finger due to long connecting layout, leading to fast transition from on-state to off-state cross-coupled circuit structure and vice versa. The power conversion efficiency is significantly increased due to this fast transition time. The rectifier is fabricated in $0.11{\mu}m$ CMOS process, RF to DC power conversion efficiency is measured as 86.4% at the peak, and this good efficiency is maintained up to 600 MHz, which is, to our best knowledge, the highest frequency based on cross-coupled configuration.

A Study on the Two Transistor Forward Converter using Synchronous Rectifier (동기정류기를 이용한 Two Transistor Forward 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Kyu-Hoon;Cho, Kyu-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1163-1165
    • /
    • 2003
  • This paper presents the TTFC(Two Transistor Forward Converter) using Synchronous Rectifier. The principle of operation, feature ana design considerations are illustrated and verified through the experiment with a 200W 100kHz MOSFET based experimental circuit.

  • PDF

A Flyback DC-DC Converter Employing a Synchronous Rectifier Driven by a New Voltage/Current Mixed Method (전압 전류 혼합구동방식을 적용한 동기정류기형 플라이백 DC-DC 컨버터)

  • Lee, Darl-Woo;Ahn, Tae-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.472-477
    • /
    • 2006
  • This paper presents a new voltage/current mixed method for driving synchronous rectifiers (SR) adapted to the flyback topology. The synchronous rectifier driven by the proposed voltage/current mixed method can operate at a wide load range with high efficiency. The gate voltage of MOSFET in the synchronous rectifier can be easily controlled by changing the ratio of resistors, irrespective of a line and load fluctuation. A 200W (12V/17A) prototype converter was built and an efficiency of 93% was measured at 10A load current.

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

Development of 10kW PWM Rectifier for Battery Charger with SiC MOSFET (SiC MOSFET을 적용한 10kW급 배터리 충전장치용 PWM 정류기 개발)

  • Joo, Dongmyoung;Hyon, Byong Jo;Park, Joon Sung;Kim, Jin-Hong;Choi, Jun-Hyuk
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.275-276
    • /
    • 2019
  • 본 논문에서는 SiC MOSFET을 적용한 10kW급 배터리 충전장치용 3상 PWM 정류기를 개발한다. 개발한 정류기는 3상 Bridge에 IGBT를 대체할 수 있는 WBG 전력반도체 SiC MOSFET을 적용하여 스위칭 주파수 향상 및 고전력밀도를 달성하였다. 개발한 10kW급 3상 PWM 정류기의 효율 및 THD 성능을 실험을 통해 검증한다.

  • PDF

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF