• Title/Summary/Keyword: MORPHOLOGICAL ADAPTATION

Search Result 60, Processing Time 1.581 seconds

MORPHOLOGICAL PATTERNS OF SELF-ETCHING PRIMERS AND SELF-ETCHING ADHESIVE BONDED TO TOOTH STRUCTURE (치질에 접착된 자가 산부식 프라이머와 자가 산부식 접착제의 형태학적 양상)

  • Cho, Young-Gon;Lee, Seok-Jong;Jeong, Jin-Ho;Lee, Young-Gon;Kim, Soo-Mee
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.1
    • /
    • pp.23-33
    • /
    • 2003
  • The purpose of this study was to compare in vitro interfacial relationship of restorations bonded with three self-etching primer adhesives and one self-etching adhesive. Class I cavity preparations were prepared on twenty extracted human molars. Prepared teeth were divided into four groups and restored with four adhesives and composites Clearfil SE $Bond/Clearfil^{TM}$ AP-X (SE), UniFil $Bond/UniFil^{\circledR}$ F (UF), FL $Bond/Filtek^{TM}$ Z 250 (FL) and Prompt $L-Pop/Filtek^{TM}$ Z 250 (LP) After storing in distilled water of room temperature for 24 hours, the specimens were vertically sectioned and decalcified. Morphological patterns between the enamel/dentin and adhesives were observed under SEM. The results of this study were as follows : 1. They showed close adaptation between enamel and SE, UF and FL except for LP. 2. The hybrid layer in dentin was $2{\;}\mu\textrm{m}$ thick in SE, $1.5{\;}\mu\textrm{m}$ thick in UF, and $0.4{\;}\mu\textrm{m}$ in both FL and LP. So, the hybrid layers of SE and UF were slightly thicker than that of FL and LP. 3. The lengths and diameters of resin tags in UF and FL were similar, but those of LP were slightly shorter and slenderer than those of SE. 4. The resin tags were long rod shape in SE, and funnel shape in other groups Within the limitations of this study, it was concluded that self-etching primer adhesives showed close adaptation on enamel. In addition, the thickness of hybrid layer ranged from $0.4-1.5{\;}\mu\textrm{m}$ between adhesives and dentin. The resin tags were long rod or funnel shape, and dimension of them was similar or different among adhesives.

Molecular adaptation of the CREB-Binding Protein for aquatic living in cetaceans

  • Jeong, Jae-Yeon;Chung, Ok Sung;Ko, Young-Joon;Lee, Kyeong Won;Cho, Yun Sung;Bhak, Jong;Yim, Hyung-Soon;Lee, Jung-Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • Cetaceans (whales, dolphins, and porpoises) are aquatic mammals that experienced drastic changes during the transition from terrestrial to aquatic environment. Morphological changes include streamlined body, alterations in the face, transformation of the forelimbs into flippers, disappearance of the hindlimbs and the acquisition of flukes on the tail. For a prolonged diving, cetaceans acquired hypoxia-resistance by developing various anatomical and physiological changes. However, molecular mechanisms underlying these adaptations are still limited. CREB-binding protein (CREBBP) is a transcriptional co-activator critical for embryonic development, growth control, metabolic homeostasis and responses to hypoxia. Natural selection analysis of five cetacean CREBBPs compared with those from 15 terrestrial relatives revealed strong purifying selection, supporting the importance of its role in mammals. However, prediction for amino acid changes that elicit functional difference of CREBBP identified three cetacean specific changes localized within a region required for interaction with SRCAP and in proximal regions to KIX domain of CREBBP. Mutations in CREBBP or SRCAP are known to cause craniofacial and skeletal defects in human, and KIX domain of CREBBP serves as a docking site for transcription factors including c-Myb, an essential regulator of haematopoiesis. In these respects, our study provides interesting insights into the functional adaptation of cetacean CREBBP for aquatic lifestyle.

Ecological significance of newly recorded halophilic Pharyngomonas kirbyi from two Korean solar salterns

  • Hyeon Been Lee;Jong Soo Park
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.405-415
    • /
    • 2024
  • Background: Hypersaline environments (> 40 practical salinity units [PSU]) represent some of the most extreme conditions on Earth, supporting a variety of halophilic and halotolerant bacteria, archaea, and protists. The taxon Heterolobosea includes numerous halophilic protists, making it a valuable model for studying eukaryotic adaptation to high salinity. Particularly, the genus Pharyngomonas, a deep-branching lineage within Heterolobosea, comprises mainly obligate halophiles, providing insights into early protist adaptations in hypersaline environments. Additionally, these protozoa play crucial ecological roles as grazers of bacteria and archaea, and are prey for higher trophic levels in hypersaline environments. Results: In the present study, two previously reported amoeboflagellates were isolated for the first time from hypersaline waters (~300 PSU) in two solar salterns in the Republic of Korea. Microscopic observations revealed that both strains exhibited the characteristic morphologies of Pharyngomonas, including amoeboid, flagellate, and cyst forms. Molecular phylogenetic analysis of their 18S rRNA gene sequences confirmed their close relationship to known Pharyngomonas kirbyi strains. The two strains demonstrated growth within a salinity range of 75-200 PSU, with optimal growth observed at 75-100 PSU, confirming their status as true halophiles. All known P. kirbyi strains are obligate halophiles, exhibiting a clear instance of adaptive radiation of halophilic eukaryotes. Additionally, the genus Pharyngomonas has been found in hypersaline environments across multiple continents (Asia, Europe, North America, Australia, and Africa), suggesting that it plays an ecologically significant role as a grazer of prokaryotes or prey for higher trophic levels in these habitats. Conclusions: On the bases of morphological and molecular analyses, two strains identified as P. kirbyi were isolated and characterized for the first time from solar salterns in the Republic of Korea. This discovery highlights the presence and adaptation of halophilic eukaryotes in such extreme environments. The confirmation of these strains as obligate halophiles provides additional evidence for the adaptive radiation of halophilic eukaryotes. Furthermore, the ecological role of Pharyngomonas species underscores their importance as trophic regulators in hypersaline ecosystems. These findings contribute to a deeper understanding of the diversity, adaptation, and ecological functions of halophilic eukaryotes in extreme environments.

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Korean Semantic Role Labeling Using Domain Adaptation Technique (도메인 적응 기술을 이용한 한국어 의미역 인식)

  • Lim, Soojong;Bae, Yongjin;Kim, Hyunki;Ra, Dongyul
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Developing a high-performance Semantic Role Labeling (SRL) system for a domain requires manually annotated training data of large size in the same domain. However, such SRL training data of sufficient size is available only for a few domains. Performances of Korean SRL are degraded by almost 15% or more, when it is directly applied to another domain with relatively small training data. This paper proposes two techniques to minimize performance degradation in the domain transfer. First, a domain adaptation algorithm for Korean SRL is proposed which is based on the prior model that is one of domain adaptation paradigms. Secondly, we proposed to use simplified features related to morphological and syntactic tags, when using small-sized target domain data to suppress the problem of data sparseness. Other domain adaptation techniques were experimentally compared to our techniques in this paper, where news and Wikipedia were used as the sources and target domains, respectively. It was observed that the highest performance is achieved when our two techniques were applied together. In our system's performance, F1 score of 64.3% was considered to be 2.4~3.1% higher than the methods from other research.

Geographical Variations of Sargassum thunbergii Morphology in Korea (한국산 갈조식물 지충이의 지리적 형태변이)

  • Kim, Sangil;Oh, Yoon Sik;Won, Nam-Il;Park, Sang Rul
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.353-362
    • /
    • 2014
  • In this study, we investigated the effect of geographical variations on Sargassum thunbergii morphology to make a taxonomic reconsideration about infraspecific taxa in this species. In order to examine the morphological characteristics of S. thunbergii, total 27 matured and morphologically intact thalli were collected from the east, west and south coast in spring 2011. Interestingly, it was observed that the species populations on the west coast were characterized by short, thin and coarse thallus, and soft texture. However, the populations on the east coast showed thicker thallus, larger leaf and vesicle, and tougher texture. Thallus height of S. thunbergii was found to be similar at both east and west coast. Further, the height of the thallus and lateral branch of the species populations residing south coast were highest whereas the size of leaf and vesicle are shortest, in comparison with east and west coast species. Although morphological characteristics of the north east coast populations corresponded to the original description of S. thunbergii f. latifolium, we could not find exact morphological features and diagnostic characters to distinguish form in S. thunbergii. These results indicated that it is not the optimal characteristics to identify infraspecific form in this species. In contrast, morphological variations may signify the adaptation of this species to local environmental factors. Thus, we recommend that intraspecific morphological variation of S. thunbergii should be carefully used to identify infraspecific taxa.

Morphological Adaptation of Zostera marina L. to Ocean Currents in Korea (한국산 거머리말(Zostera marina L.)의 해류에 대한 형태적 적응)

  • Lim, Dong-Ok;Yun, Jang-Tak;Han, Kyung-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.431-438
    • /
    • 2009
  • The main purpose of this research is to prepare and provide basic materials for the propagational strategy of eelgrass by investigating on the morphological adaptation of Korean Zostera marina to ocean currents. An eelgrass plant mainly consists of rhizome, leaf sheath, leaves and roots. The rhizome is the horizontal stem of the plant that serves as the backbone from which the leaves and roots emerge. The leaf sheath is the bundle at the base of the leaves that holds the leaves together, protecting the meristem, the primary growth point of the shoot. Leaves originate from a meristem which is protected by a sheath at the actively growing end of the rhizome. As the shoot grows, the rhizome elongates, moving across or within the sediment, forming roots as it progresses. The aggregated leaves from the leaf sheath are found to have two cell layers on one side and multiple layers of airy tissues called aerenchyma on the other. The aerenchyma tissues are developed in multi-layered cell structures surrounding the veins which are formed in the leaf sheath. Generative shoots are made of rhizomes, which are circular or ovoidal, stem, and spathe and spadix. The transverse section of rhizome and the stem and central floral axis is found to be circular, ovoid and in the shape of convex respectively, and the vascular bundle, which is a part of transport system, has one large tube in the center and two small tubes on both sides. The layers of collenchyma cells numbered from 12 to 15 in the stem, and from 7 to 12 in the rhizome. The seed coat is composed of sclereids, small bundles of sclerenchyma tissues, which prevent the influx of sea water from the outside and help endure the environmental stress. In conclusion, alternative multi-layer structure in circular, convex type aggregated leaf base are interpreted to morphological adaption as doing tolerable elastic structure through movement of seawater. The generative shoots develop long slim stem and branches in circular or ovoidal shapes to minimize the adverse impacts of sea current, which can be interpreted as the plant's morphological adaptation to its environment.

A STUDY OF EFFECT ON DENTURE RETENTION WITH VARIOUS TYPES OF POSTERIOR PALATAL SEAL (후구개 경계폐쇄 형태가 의치 유지력에 미치는 영향에 관한 연구)

  • Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 1984
  • The effects between preexisting four types and one that author had designed of posterior palatal seal on the retention of denture base were compared and observed from six systemically healthy edentulous subjects. Using one without posterior palatal seal as the control, the retention of each type was measured and analyzed six times with cantilever type Load cell after adaptation of denture base, which were constructed with usual manner. The following results wear obtained. 1. Morphological and positional changes of posterior palatal seal effected on denture retention. 2. No specific type showed most desirable effect in every experimental subject. 3. Experimental subject I, II, VI showed higher retention on the control in every type. 4. In five types of posterior palatal seal, for subject III, VI F types and for subject II, V C types were most effective. 5. In each experimental subject F type showed higher retention than the control.

  • PDF

Mitochondrial OXPHOS genes provides insights into genetics basis of hypoxia adaptation in anchialine cave shrimps

  • Guo, Huayun;Yang, Hao;Tao, Yitao;Tang, Dan;Wu, Qiong;Wang, Zhengfei;Tang, Boping
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1169-1180
    • /
    • 2018
  • Cave shrimps from the genera Typhlatya, Stygiocaris and Typhlopatsa (TST complex) comprises twenty cave-adapted taxa, which mainly occur in the anchialine environment. Anchialine habitats may undergo drastic environmental fluctuations, including spatial and temporal changes in salinity, temperature, and dissolved oxygen content. Previous studies of crustaceans from anchialine caves suggest that they have possessed morphological, behavioral, and physiological adaptations to cope with the extreme conditions, similar to other cave-dwelling crustaceans. However, the genetic basis has not been thoroughly explored in crustaceans from anchialine habitats, which can experience hypoxic regimes. To test whether the TST shrimp-complex hypoxia adaptations matched adaptive evolution of mitochondrial OXPHOS genes. The 13 OXPHOS genes from mitochondrial genomes of 98 shrimps and 1 outgroup were examined. For each of these genes was investigated and compared to orthologous sequences using both gene (i.e. branch-site and Datamonkey) and protein (i.e. TreeSAAP) level approaches. Positive selection was detected in 11 of the 13 candidate genes, and the radical amino acid changes sites scattered throughout the entire TST complex phylogeny. Additionally, a series of parallel/convergent amino acid substitutions were identified in mitochondrial OXPHOS genes of TST complex shrimps, which reflect functional convergence or similar genetic mechanisms of cave adaptation. The extensive occurrence of positive selection is suggestive of their essential role in adaptation to hypoxic anchialine environment, and further implying that TST complex shrimps might have acquired a finely capacity for energy metabolism. These results provided some new insights into the genetic basis of anchialine hypoxia adaptation.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF