• Title/Summary/Keyword: MOPs

Search Result 42, Processing Time 0.017 seconds

Impact of MOPs on Effectiveness for M-to-M Engagement with the Counter Long Range Artillery Intercept System (다대다 교전 효과도에 있어서 각 요소 성능의 영향력 연구 - 장사정포 요격체계 시뮬레이션)

  • Yook, Jung Kwan;Hwang, Su Jin;Kim, Tae Gu
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.57-72
    • /
    • 2020
  • To respond to the threat of Long range artillery of North Korea, it is necessary to establish the Korean counter long range artillery intercept system(CLRAIS). The purpose of this study is to study the operational concept of the CLRAIS against the threat of long range artillery of North Korea, and to develop the operational effectiveness process of the CLRAIS. First, we set up the operating concept of the CLRAIS and established the concept of an effectiveness in a many-to-many engagement situation and a process to derive it. Based on this, a tool was developed to analyze the actual effectiveness. In order to find out the factors influencing the effectiveness in many-to-many engagement situations, simulation experiments were performed by combining various variables such as detection assets, engagement control, and launchpad performance. As a result, it was found that in addition to the missile performance, the performance of the detection assets and the engagement control center had a significant impact on the intercept rate and the defense success rate. These findings can be used to understand important indicators in terms of effectiveness in many-to-many engagement situations in the future development of weapon system, and to determine the development direction and target value of each element necessary for the level of defense success rate to be achieved.

Detection of genome-wide structural variations in the Shanghai Holstein cattle population using next-generation sequencing

  • Liu, Dengying;Chen, Zhenliang;Zhang, Zhe;Sun, Hao;Ma, Peipei;Zhu, Kai;Liu, Guanglei;Wang, Qishan;Pan, Yuchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.320-333
    • /
    • 2019
  • Objective: The Shanghai Holstein cattle breed is susceptible to severe mastitis and other diseases due to the hot weather and long-term humidity in Shanghai, which is the main distribution centre for providing Holstein semen to various farms throughout China. Our objective was to determine the genetic mechanisms influencing economically important traits, especially diseases that have huge impact on the yield and quality of milk as well as reproduction. Methods: In our study, we detected the structural variations of 1,092 Shanghai Holstein cows by using next-generation sequencing. We used the DELLY software to identify deletions and insertions, cn.MOPS to identify copy-number variants (CNVs). Furthermore, we annotated these structural variations using different bioinformatics tools, such as gene ontology, cattle quantitative trait locus (QTL) database and ingenuity pathway analysis (IPA). Results: The average number of high-quality reads was 3,046,279. After filtering, a total of 16,831 deletions, 12,735 insertions and 490 CNVs were identified. The annotation results showed that these mapped genes were significantly enriched for specific biological functions, such as disease and reproduction. In addition, the enrichment results based on the cattle QTL database showed that the number of variants related to milk and reproduction was higher than the number of variants related to other traits. IPA core analysis found that the structural variations were related to reproduction, lipid metabolism, and inflammation. According to the functional analysis, structural variations were important factors affecting the variation of different traits in Shanghai Holstein cattle. Our results provide meaningful information about structural variations, which may be useful in future assessments of the associations between variations and important phenotypes in Shanghai Holstein cattle. Conclusion: Structural variations identified in this study were extremely different from those of previous studies. Many structural variations were found to be associated with mastitis and reproductive system diseases; these results are in accordance with the characteristics of the environment that Shanghai Holstein cattle experience.