• Title/Summary/Keyword: MODIS Satellite

Search Result 369, Processing Time 0.025 seconds

Comparison of Snow Cover Fraction Functions to Estimate Snow Depth of South Korea from MODIS Imagery

  • Kim, Daeseong;Jung, Hyung-Sup;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.401-410
    • /
    • 2017
  • Estimation of snow depth using optical image is conducted by using correlation with Snow Cover Fraction (SCF). Various algorithms have been proposed for the estimation of snow cover fraction based on Normalized Difference Snow Index (NDSI). In this study we tested linear, quadratic, and exponential equations for the generation of snow cover fraction maps using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua satellite in order to evaluate their applicability to the complex terrain of South Korea and to search for improvements to the estimation of snow depth on this landscape. The results were validated by comparison with in-situ snowfall data from weather stations, with Root Mean Square Error (RMSE) calculated as 3.43, 2.37, and 3.99 cm for the linear, quadratic, and exponential approaches, respectively. Although quadratic results showed the best RMSE, this was due to the limitations of the data used in the study; there are few number of in-situ data recorded on the station at the time of image acquisition and even the data is mostly recorded on low snowfall. So, we conclude that linear-based algorithms are better suited for use in South Korea. However, in the case of using the linear equation, the SCF with a negative value can be calculated, so it should be corrected. Since the coefficients of the equation are not optimized for this area, further regression analysis is needed. In addition, if more variables such as Normalized Difference Vegetation Index (NDVI), land cover, etc. are considered, it could be possible that estimation of national-scale snow depth with higher accuracy.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

Analysis of 2012 Spring Drought Using Meteorological and Hydrological Drought Indices and Satellite-based Vegetation Indices (기상 및 수문학적 가뭄지수와 위성 식생지수를 활용한 2012년 봄 가뭄 분석)

  • Ahn, So-Ra;Lee, Jun-Woo;Kim, Seong-Joon
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.78-88
    • /
    • 2014
  • This study is to analyze the 2012 spring drought of Korea using drought index and satellite image. The severe spring drought recorded in May of 2012 showed 36.4% of normal rainfall(99.5mm). The areas of west part of Gyeonggi-do and Chungcheong-do were particularly serious. The drought indices both the SPI(Standardized Precipitation Index) and WADI(WAter supply Drought Index) represented the drought areas from the end of May and to the severe drought at the end of June. The drought by SPI completely ended at the middle of July, but the drought by WADI continued severe drought in the agricultural reservoir watersheds of whole country even to the end of the July. On the other hand, the results by spatial NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index) data from Terra MODIS, both indices showed relatively low values around the areas of Sinuiju, Pyongyang, and west coast of North Korea and Gyeonggi-do and Chungcheong-do of South Korea indicating drought condition. Especially, the values of NDVI and EVI at Chungcheong-do were critically low in June compared to the normal year value.

  • PDF

MULTISENSOR SATELLITE MONITORING OF OIL POLLUTION IN NORTHEASTERN COASTAL ZONE OF THE BLACK SEA

  • Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.989-992
    • /
    • 2006
  • The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants.

  • PDF

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.

Spatial Analysis of Major Atmospheric Aerosol Species Using Earth Observing Satellite Data (지구관측 위성자료를 이용한 주요 대기 에어러솔 성분의 공간분포 분석)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.109-127
    • /
    • 2011
  • Atmospheric aerosols, small particles in the atmosphere, are one of the important parameters in climate change and human health. Additionally, accurate estimates of aerosol species are increasingly important in environmental impact assessment studies. Recent advances in global satellite remote sensing provide powerful tool for air quality monitoring. This study explores the potential usage of satellite derived data such as atmospheric aerosols for air quality monitoring as well as climate change study. The objectives of this study is to understand the general features of the global distribution of type dependent aerosols. A detailed spatio-temporal variability of the each different satellite dataset shows the variation of the global zonal average and specific geographical regions where the strong emission sources are located. Especially, significantly large aerosol amounts are observed in Asia and Africa because of the desert dust storm, anthropogenic and biomass burning emissions.

DETECTION AND MASKING OF CLOUD CONTAMINATION IN HIGH-RESOLUTION SST IMAGERY: A PRACTICAL AND EFFECTIVE METHOD FOR AUTOMATION

  • Hu, Chuanmin;Muller-Karger, Frank;Murch, Brock;Myhre, Douglas;Taylor, Judd;Luerssen, Remy;Moses, Christopher;Zhang, Caiyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1011-1014
    • /
    • 2006
  • Coarse resolution (9 - 50 km pixels) Sea Surface Temperature satellite data are frequently considered adequate for open ocean research. However, coastal regions, including coral reef, estuarine and mesoscale upwelling regions require high-resolution (1-km pixel) SST data. The AVHRR SST data often suffer from navigation errors of several kilometres and still require manual navigation adjustments. The second serious problem is faulty and ineffective cloud-detection algorithms used operationally; many of these are based on radiance thresholds and moving window tests. With these methods, increasing sensitivity leads to masking of valid pixels. These errors lead to significant cold pixel biases and hamper image compositing, anomaly detection, and time-series analysis. Here, after manual navigation of over 40,000 AVHRR images, we implemented a new cloud filter that differs from other published methods. The filter first compares a pixel value with a climatological value built from the historical database, and then tests it against a time-based median value derived for that pixel from all satellite passes collected within ${\pm}3$ days. If the difference is larger than a predefined threshold, the pixel is flagged as cloud. We tested the method and compared to in situ SST from several shallow water buoys in the Florida Keys. Cloud statistics from all satellite sensors (AVHRR, MODIS) shows that a climatology filter with a $4^{\circ}C$ threshold and a median filter threshold of $2^{\circ}C$ are effective and accurate to filter clouds without masking good data. RMS difference between concurrent in situ and satellite SST data for the shallow waters (< 10 m bottom depth) is < $1^{\circ}C$, with only a small bias. The filter has been applied to the entire series of high-resolution SST data since1993 (including MODIS SST data since 2003), and a climatology is constructed to serve as the baseline to detect anomaly events.

  • PDF

Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations (극궤도 위성 관측을 이용한 지표면에서의 태양 복사에너지 도출)

  • Kim, Dong-Cheol;Jeong, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.201-220
    • /
    • 2016
  • In this study, the net solar radiation fluxes at the surface are retrieved by updating an existing algorithm to be applicable for MODerate resolution Imaging Spectroradiometer (MODIS) observations, in which linear relationships between the solar radiation reflected from the top of atmosphere and the net surface solar radiation are employed. The results of this study have been evaluated through intercomparison with existing Clouds and the Earth's Radiant Energy System (CERES) data products and ground-based data from pyranometers at Gangneung-Wonju National University (GWNU) and the Southern Great Plains (SGP) of observatory of Atmospheric Radiation Measurement (ARM) site. Prior to the comparison of the surface radiation energy in relation to the energy balance of the earth, the radiation energy of the upper part of the atmosphere was compared. As a result, the coefficient of determination was over 0.9, showing considerable similarity, but the Root-Mean-Square-Deviation (RMSD) value was somewhat different, and the downward and net solar-radiation energy also showed similar results. The surface solar radiation data measured from pyranometers at Gangneung-Wonju National University (GWNU) and Atmospheric Radiation Measurement (ARM) observatory are used to validate the solar radiation data produced in this study. When compared to the GWNU, The results of this study show smaller RMSD values than CERES data, showing slightly better agreements with the surface data. On the other hand, when compared with the data from ARM SGP observatory, the results of this study bear slightly larger RMSD values than those for CERES. The downward and net solar radiation estimated by the algorithm of this study at a high spatial resolution are expected to be very useful in the near future after refinements on the identified problems, especially for those area without ground measurements of solar radiation.