Lee, Seong Kyu;Shin, Yong Chul;Jang, Sang Min;Yoon, Sun Kwon;Park, Kyung Won
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.251-251
/
2016
인공위성을 이용한 가뭄연구에는 전지구적으로 운용되는 GPM (Global Precipitation Measurement) 위성, AQUA/TERRA 위성의 MODIS (MODerate resolution Imaging Spectroradiometer) 센서 등에서 수집된 관측 자료가 이용된다. 그러나 전지국적으로 관측된 위성 자료는 자료를 생산 제공하는 기관에 따라 자료의 파일포맷 (NetCDF, HDF5, GeoTIFF 등), 자료의 투영법 (projection) 등이 상이하다. 그러므로 가뭄연구에 다중위성자료를 활용하고자 하는 지리정보시스템(Geographic Information System: GIS)에 대한 전문지식이 부족한 연구자는 자료의 표준화 (파일포맷과 투영변환 등) 과정으로 인해 원활한 연구수행이 어렵다. MODIS 위성자료의 경우에는 일반적으로 많이 사용되는 횡단메르카토르 도법 (Transverse Mercator Projection: TM) 대신 시뉴소이드 도법 (sinusoidal projection)을 이용한다. 그래서 미국 지질조사국은 MODIS 자료의 재투영(reprojection)을 위한 전용 소프트웨어인 MRT (MODIS Reprojection Tool)를 배포하고 있다. 본 연구에서는 무료/오픈소스 소프트웨어를 활용하여 시뉴소이드 도법이 적용된 MODIS 자료의 수집, 재투영, 파일포맷 변환 등을 자동으로 처리하는 기법을 개발하여 가뭄활용에 이용하고자 하였으며, MODIS MOD09GA/MOD11A1 자료를 이용하여 효율성을 검증하였다.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1635-1639
/
2010
기후변화가 수자원에 미치는 영향을 파악하기 위해서는 물 순환 및 물 수지의 변화 경향 파악이 필수적이며, 대기 중의 가강수량 파악은 가뭄 호우 등에 대한 기본 조사로서 수자원 연구에 필요하다. 본 연구에서는 MODIS 위성자료로부터 가강수량을 산출하여 검증하고, 전구 및 동아시아의 분포 특성 및 변화 경향을 분석하였다. MODIS 위성자료는 NASA의 홈페이지로부터 입수하여 가강수량을 산출하였고, 산출한 가강수량은 NCEP Reanalysis2 자료를 이용하여 검증하였다. MODIS 위성자료를 이용하여 전구 가강수량의 경년변화 및 분포 분석을 실시한 결과 가강수량의 분포는 ITCZ의 움직임과 잘 일치하였고, 6월에 가장 많은 가강수량을 나타내며 10월에 가장 적은 가강수량을 나타냈다. 경년변화는 2000년대 중반까지는 증가하는 경향을 보이고 있었지만 최근 3년 정도는 감소하는 추세를 보이고 있다. MODIS 위성자료를 이용하여 동아시아 지역 가강수량의 경년변화 및 분포 분석을 실시한 결과 가강수량의 분포는 계절적인 특징을 잘 나타내고 있으며, 7월에 가장 많은 가강수량을 나타내고 있으며 11월에 가장 적은 가강수량을 나타내고 있고, 경년변화는 큰 변화는 보이지 않았다. MODIS 위성으로부터 산출한 가강수량과 표면온도를 비교한 결과 가강수량은 계절적인 특징은 거의 비슷한 변화를 가지고 있으며 년 변화에서는 동아시아 가을의 변화가 통계적으로 유의한 양의 상관관계를 가지고 있었으며, 동아시아 가을의 가강수량은 표면온도와 함께 증가하는 경향을 나타내고 있다.
In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.154-154
/
2012
지표에서의 토양수분은 작은 구성비를 가짐에도 불구하고 여러 수문 현상을 연계하는 매우 중요한 인자로써 최근 관련 연구가 활발하게 진행되고 있다. 토양수분은 침투나 침루를 통하여 강우와 지하수를 연결하는 기능을 함과 동시에 강우사상에 따른 유출특성에 직접적인 영향을 미치며 증발산을 통하여 에너지 순환을 연결하는 중요한 기능을 한다. 토양수분을 측정하는 방법에는 세타 탐침(Theta Probe), 장력계, TDR(Time Domain Reflectrometry) 등이 이용되고 있으며, 광역 토양수분자료의 보다 정확한 공간 변동성의 관측을 위하여 항공원격탐사와 인공위성 원격탐사기술이 개발되어 적용되고 있다. 인공위성 영상은 자료의 분석이 간편하며, 공간자료이므로 공간 변화를 분석하는 데 있어 매우 편리하다. 그 중 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상은 저해상도 영상으로 극궤도 위성인 Terra와 Aqua 위성에 장착되어 있으며, NASA에서 필요한 정보를 받아 사용할 수 있다. 본 연구에서는 유역의 물리적 지형자료와 같은 방대한 양의 자료 수집 없이도, 모형이 구축되면 인공위성자료와 강우자료만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 산정할 수 있는 자료 지향형 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하였다. 사용된 퍼지변수로는 시험유역의 토양수분 관측자료와 강수량 및 인공위성 자료인 MODIS NDVI(Normalize Difference Vegetation Index), MODIS LST(Land-Surface Temperature) 영상을 이용하였다. MODIS NDVI는 시간 해상도 8일, 공간해상도 250 인 Level 3 영상이며, MODIS LST는 시간 해상도 1일, 공간해상도 1 km인 Level 3 영상을 사용하였다. 위성자료를 사용하기 위해 Korea TM 좌표체계로 변환한 뒤, 토양수분 관측지점이 속한 각 셀의 속성값을 추출하였다. 위성자료와 수집된 자료 및 토양수분자료와의 관계를 분석하기 위하여 입력자료를 다양한 방법으로 구성하여 입력 변수를 생성하였다. 생성된 입력 변수와 ANFIS 모형을 연계하여 각각의 토양수분 산정모형을 구축하고 대상지점에 대한 토양수분을 산정 및 비교 분석하였다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.446-446
/
2022
본 연구에서는 MODIS(MODerate resolution Imaging Spectroradiometer) 다중 위성영상을 기반으로 전국 시공간 토양수분 및 토양수분 기반의 가뭄지수 SWDI(Soil Water Deficit Index)를 산정하였다. 시공간 토양수분의 산정을 위해 입력자료로 MODIS 위성의 지표면온도(Land Surface Temperature, LST), 증발산 및 식생(Enhanced Vegetation Index, EVI; Fraction of Photosynthetically Active Radiation, FPAR; Leaf Area Index, LAI; Normalized Difference Vegetation Index, NDVI) 관련 산출물 자료와 지상 관측자료인 일 단위 강수량 자료를 구축하였다. MODIS 위성영상은 산출물별로 제공되는 QC(Quality Control) 영상을 활용해 보정을 수행하였고, 공간 강수량 자료는 기상청에서 제공하는 전국 92개 지점의 종관기상관측자료를 구축하여 공간보간기법인 역거리가중법을 적용해 생성하였다. 실측 토양수분은 농촌진흥청에서 제공하는 76개 지점의 토양 깊이 10 cm에 설치된 TDR(Time Domain Reflectomerty) 센서에서 측정된 토양수분 자료를 활용하였으며, 토양수분 모의 시 토양 속성을 고려하기 위해 국립농업과학원에서 제공하는 토양도를 구축하여 활용하였다. 토양수분 산정 모형은 다중선형회귀모형(Multiple Linear Regression Model, MLRM)을 활용하였으며, 계절 및 토성에 따른 회귀식을 산정하였다. 회귀식 기반의 토양수분과 토성별 포장용수량 및 영구위조점 값을 이용하여 SWDI를 산정하고, 실제 가뭄 발생 시기 및 지역과의 비교하고자 한다.
지난 2008년 가을부터 시작되어 2009년 봄까지 발생했던 전국적인 극한 가뭄을 계기로 가뭄모니터링의 필요성은 증대되었다. 본 연구는 우리나라에서 가뭄 모니터링을 위한 MODIS 위성영상 자료의 활용을 제안하였다. MODIS 영상은 임의의 지역의 시 공간적 특성을 관찰할 수 있는 해상도를 보유하고 있으며, MODIS에서 제공하는 MOD11(LST: Land Surface Temperature)은 가뭄 발생의 판별에는 유효하나 가뭄 심도와 지속기간을 판단하기 위해서는 기준이 되는 강우량 및 가뭄지수와의 비교가 필요하다고 알려져 있다. 본 연구에서는 MOD11(LST) 위성자료와 EDI(Effective Drought Index) 가뭄지수의 상관성을 고려하여 한반도 가뭄모니터링을 위한 MODIS 위성영상의 활용성을 평가하였다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.128-128
/
2019
증발산량은 수표면이나 토양면에서 수증기의 형태로, 대기중으로 방출되는 증발량과 식물의 엽면을 통해 지중의 물이 대기 중으로 방출되는 증산량의 합으로, 기상학과 수문학에 사용되는 중요한 농업기상 매개 변수이다. 증발산량을 관측하는 방법으로는 라이시미터 (Lysimeter)와 같은 관측장비를 통해 실제 증발산량을 측정하는 방법과, FAO-56 Penman-Monteith (PM)과 같은 증발산량 추정 알고리즘을 이용하여 산출하는 방법이 있다. 국내의 경우 기상관측소에서 수집한 데이터를 이용하여 증발산량 추정공식을 통해 증발산량을 산정하는 연구가 이루어졌으며, 위성영상에 기반하여 증발산을 추정하려는 연구가 진행되고 있다. 본 연구에서는 미국 항공우주국 (National Aeronautics and Space Administration, NASA)에서 추진하는 위성을 이용한 지구 전역의 장기관측 계획 EOS (Earth Observing System)에 의해 발사된 지구 관측 위성인 MODIS Terra 위성에서 제공되는 MOD16A2 위성영상을 사용하였다. MOD16A2 위성영상은 2001년부터 현재까지 500m의 픽셀 단위로 제공되는 8일 간격의 전지구 규모의 위성영상으로, 본 연구에서는 우리나라 관측소에서 관측된 기상인자를 PM 공식에 입력하여 산정된 증발산량 값과 MOD16A2 위성영상 데이터를 비교하여 우리나라 MOD16A2 위성영상 적용성 및 밭작물 가뭄분석에 적용하였다.
This study estimates MODIS-derived evapotranspiration data quality by revised RS-PM algorithm in Seolmacheon test basin. We used latent flux with eddy covariance method to evaluate MODIS-derived spatial evapotranspiration and gap-filled these data by three methods (FAO-PM, MDV and Kalman Filter) and to quantify daily evapotranspiration. Gap-filled daily evapotranspiration data was used to evaluate evapotranspiration computed by revised RS-PM algorithm derived MODIS satellite images. For the water budget analysis, we used soil moisture content that is quantified to average individual soil moisture rate observed by TDR (Time Domain Reflectometry) sensor at soil depth. The soil moisture variation is calculated in consideration from initial to final soil moisture content. According to the result of this study, evapotranspiration computed by revised RS-PM algorithm is very larger than eddy covariance data gap-filled by three methods. Also, water budget characteristics is not closed. We could analysis that MODIS-derived spatial evapotranspiration does not represent actual evapotranspiration in Seolmacheon.
We analyzed the potential for joint utilization of Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery Normalized Difference Vegetation Index (NDVI) in crop assessment, considering the aging of MODerate resolution Imaging Spectroradiometer (MODIS) satellites. Over 11 years from 2012 to 2022, we examined the characteristics of NDVI changes in corn and soybean cultivation areas in Illinois, USA. VIIRS and MODIS satellite imagery NDVI exhibited a high correlation coefficient of over 0.98. However, during periods of rapid crop growth or decline, VIIRS NDVI showed values approximately 0.12 to 0.14 higher than MODIS. Estimating crop anomaly classes based on NDVI, we observed similar trends in corn and soybean crop anomaly classes in 2018 and 2019. However, in 2022, there appeared to be a significant divergence in crop anomaly classes, suggesting the need for further investigation. The correlation coefficients between MODIS and VIIRS satellite imagery NDVI and corn and soybean yields were consistently high, exceeding 0.8, indicating the potential for quantity estimation using both MODIS and VIIRS satellite imagery. Specifically, for VIIRS NDVI, excluding the increasing trend in crop quantity estimation for soybeans enhanced the correlation, and compared to MODIS, it showed a consistently high correlation with quantity from approximately 16 days earlier, indicating the potential for early estimation.
Kim, Jin Uk;Lee, Yong Gwan;Chung, Jee Hun;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.103-103
/
2019
본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.