• Title/Summary/Keyword: MODELS

Search Result 41,176, Processing Time 0.053 seconds

Seasonal effect on hydrological models parameters and performance

  • Birhanu, Dereje;Kim, Hyeonjun;Jang, Cheolhee;Park, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.326-326
    • /
    • 2018
  • The study will assess the seasonal effect of hydrological models on performance and parameters for streamflow simulation. TPHM, GR4J, CAT, and TANK-SM hydrological models will be applied for simulating streamflow in ten small and large watersheds located in South Korea. The readily available hydrometeorological data will be applied as an input to the four hydrological models and the potential evapotranspiration will be computed using the Penman-Monteith equation. The SCE-UA algorithm implemented in PEST will be used to calibrate the models considering similar objective functions bedside the calibration will be renewed to capture the seasonal effects on the model performance and parameters. The seasonal effects on the model performance and parameters will be presented after assessing the four hydrologic models results. The conventional approach and season-based results will be evaluated for each model in the tested watersheds and a conclusion will be made based on the finding of the results.

  • PDF

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

Advanced approach to design of small wind turbine support structures

  • Ismar, Imamovic;Suljo, LJukovac;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.525-542
    • /
    • 2022
  • In this work we present an advanced approach to the design of small wind turbine support steel structures. To this end we use an improved version of previously developed geometrically exact beam models. Namely, three different geometrically exact beam models are used, the first two are the Reissner and the Kirchhoff beam models implementing bi-linear hardening response and the third is the Reissner beam capable of also representing connections response. All models were validated in our previous research for a static response, and in this work they are extended to dynamic response. With these advanced models, we can perform analysis of four practical solutions for the installation of small wind turbines in new or existing buildings including effects of elastoplastic response to vibration problems. The numerical simulations confirm the robustness of numerical models in analyzing vibration problems and the crucial effects of elastoplastic response in avoiding resonance phenomena.

QUANTITATIVE ANALYSES USING 4D MODELS - AN EXPLORATIVE STUDY

  • Rogier Jongeling;Jonghoon Kim;Claudio Mourgues;Martin Fischer;Thomas Olofsson
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.830-835
    • /
    • 2005
  • 4D models help construction planners to develop and evaluate construction plans. However, current analyses using 4D models are mainly visual and limit the quantitative comparison of construction alternatives. This paper explores the usefulness of extracting quantitative information from 4D models to support time-space analyses. We use two 4D models of an industry test case to illustrate how to analyze 4D content quantitatively (i.e., work space areas and distances between concurrent activities). This paper shows how these two types of 4D content can be extracted from 4D models to support 4D-based-analysis and novel presentation of construction planning information. We suggest further research to formalize the content of 4D models to enable comparative quantitative analyses of construction planning alternatives. Formalized 4D content will enable the development of reasoning mechanisms that automate 4D-model-based analyses and provide the information content for informative presentations of construction planning information.

  • PDF

A Note on Adaptive Estimation for Nonlinear Time Series Models

  • Kim, Sahmyeong
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.387-406
    • /
    • 2001
  • Adaptive estimators for a class of nonlinear time series models has been proposed by several authors. Koul and Schick(1997) proposed the adaptive estimators without sample splitting for location-type time series models. They also showed by simulation that the adaptive estimators without sample splitting have smaller mean squared errors than those of the adaptive estimators with sample splitting. the present paper generalized the result in a case of location-scale type nonlinear time series models by simulation.

  • PDF

Characteristics on Land-Surface and Soil Models Coupled in Mesoscale Meteorological Models (중규모 기상모델에 결합된 육지표면 및 토양 과정 모델들의 특성)

  • Park, Seon K.;Lee, Eunhee
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • Land-surface and soil processes significantly affect mesoscale local weather systems as well as global/regional climate. In this study, characteristics of land-surface models (LSMs) and soil models (SMs) that are frequently coupled into mesoscale meteorological models are investigated. In addition, detailed analyses on three LSMs, employed by the PSU/NCAR MM5, are provided. Some impacts of LSMs on heavy rainfall prediction are also discussed.

A Study on the Validation of Long-Term Dispersion Models (장기예측모델의 정합도 분석에 관한 연구)

  • 송동웅;김원만
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.150-155
    • /
    • 1991
  • The Gaussian models were selected as the reference models for the study. During the study of the model verification in the Ulsan Industrial Complex, the accuracy and limitation of models were assessed. The correlation coefficients of the observed and the predicted values for CDM 2.0 and TCM2B were ranged from 0.57 to 0.73 and from 0.72 to 0.86, respectively. And there were relatively large discrepancies between the predicted and predicted and the measured concentrations for several locations. Therefore, the Gaussian models should be used with careful discretion to apply the urban area in Korea.

  • PDF

Development of Nonlinear Models for Drum boiler (보일러 드림의 비선형 모델 개발)

  • Park, Kyoung-Cheol;Cong, Jae-Sop;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.390-393
    • /
    • 1991
  • This paper describes nonlinear 4th order models for a natural circulation drum-boiler. The models lire derived from energy balance and mass balance principles. They can be characterized by a few physical parameters that are easily obtained from construction data. The models also require steam tables for a limited operating range, which can be approximated by polynomials. The models have been validated against real plant operating data.

  • PDF

Analyzing the binary system using standard stellar models: HIP 20916 and HIP 101769

  • Beom, Minje;Kim, Yong Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.71.2-71.2
    • /
    • 2013
  • The standard stellar models for HIP 20916 and HIP 101769 have been constructed to determine the properties of the binary system. Augmented with speckle data which is the magnitude difference between stars of the binary system, the previously determined parameters, such as [Fe/H], distance, total mass, and etc, are used to construct the standard stellar models. And the Green table is used to convert L and $T_{eff}$ into $M_v$ and color for comparison between models and observational data. We present the constructed stellar models of the system.

  • PDF

Shear Design of Reinforced Concrete Shear Walls with Openings using Strut-and-Tie Models (스트럿-타이 모델을 이용한 개구부를 갖는 전단벽의 전단 설계)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.244-247
    • /
    • 2004
  • This study proposes the design method of the shear walls with openings using strut-and-tie models. Strut-and-tie models are constructed for opening near the middle of the wall and for opening near a wall boundary. These enables an admissible load path for the horizontal earthquake force. These models consider the size and position of opening effectively. Each model is suitable for the seismic response corresponding with lateral forces in a given direction to be considered. The proposed models are good agreements with nonlinear finite element analysis(DIANA) results.

  • PDF