• Title/Summary/Keyword: MNIST dataset

Search Result 39, Processing Time 0.027 seconds

BEGINNER'S GUIDE TO NEURAL NETWORKS FOR THE MNIST DATASET USING MATLAB

  • Kim, Bitna;Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.337-348
    • /
    • 2018
  • MNIST dataset is a database containing images of handwritten digits, with each image labeled by an integer from 0 to 9. It is used to benchmark the performance of machine learning algorithms. Neural networks for MNIST are regarded as the starting point of the studying machine learning algorithms. However it is not easy to start the actual programming. In this expository article, we will give a step-by-step instruction to build neural networks for MNIST dataset using MATLAB.

Security Vulnerability Verification for Open Deep Learning Libraries (공개 딥러닝 라이브러리에 대한 보안 취약성 검증)

  • Jeong, JaeHan;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Deep Learning, which is being used in various fields recently, is being threatened with Adversarial Attack. In this paper, we experimentally verify that the classification accuracy is lowered by adversarial samples generated by malicious attackers in image classification models. We used MNIST dataset and measured the detection accuracy by injecting adversarial samples into the Autoencoder classification model and the CNN (Convolution neural network) classification model, which are created using the Tensorflow library and the Pytorch library. Adversarial samples were generated by transforming MNIST test dataset with JSMA(Jacobian-based Saliency Map Attack) and FGSM(Fast Gradient Sign Method). When injected into the classification model, detection accuracy decreased by at least 21.82% up to 39.08%.

Fashion Clothing Image Classification Deep Learning (패션 의류 영상 분류 딥러닝)

  • Shin, Seong-Yoon;Wang, Guangxing;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.676-677
    • /
    • 2022
  • In this paper, we propose a new method based on a deep learning model with an optimized dynamic decay learning rate and improved model structure to achieve fast and accurate classification of fashion clothing images. Experiments are performed using the model proposed in the Fashion-MNIST dataset and compared with methods of CNN, LeNet, LSTM and BiLSTM.

  • PDF

Comparison of Spatial and Frequency Images for Character Recognition (문자인식을 위한 공간 및 주파수 도메인 영상의 비교)

  • Abdurakhmon, Abduraimjonov;Choi, Hyeon-yeong;Ko, Jaepil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.439-441
    • /
    • 2019
  • Deep learning has become a powerful and robust algorithm in Artificial Intelligence. One of the most impressive forms of Deep learning tools is that of the Convolutional Neural Networks (CNN). CNN is a state-of-the-art solution for object recognition. For instance when we utilize CNN with MNIST handwritten digital dataset, mostly the result is well. Because, in MNIST dataset, all digits are centralized. Unfortunately, the real world is different from our imagination. If digits are shifted from the center, it becomes a big issue for CNN to recognize and provide result like before. To solve that issue, we have created frequency images from spatial images by a Fast Fourier Transform (FFT).

  • PDF

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

Handwritten Hangul Graphemes Classification Using Three Artificial Neural Networks

  • Aaron Daniel Snowberger;Choong Ho Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2023
  • Hangul is unique compared to other Asian languages because of its simple letter forms that combine to create syllabic shapes. There are 24 basic letters that can be combined to form 27 additional complex letters. This produces 51 graphemes. Hangul optical character recognition has been a research topic for some time; however, handwritten Hangul recognition continues to be challenging owing to the various writing styles, slants, and cursive-like nature of the handwriting. In this study, a dataset containing thousands of samples of 51 Hangul graphemes was gathered from 110 freshmen university students to create a robust dataset with high variance for training an artificial neural network. The collected dataset included 2200 samples for each consonant grapheme and 1100 samples for each vowel grapheme. The dataset was normalized to the MNIST digits dataset, trained in three neural networks, and the obtained results were compared.

A Study on Creating a Dataset(G-Dataset) for Training Neural Networks for Self-diagnosis of Ocular Diseases (안구 질환 자가 검사용 인공 신경망 학습을 위한 데이터셋(G-Dataset) 구축 방법 연구)

  • Hyelim Lee;Jaechern Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.580-581
    • /
    • 2024
  • 고령화 사회에 접어들면서 황반 변성과 당뇨 망막 병증 등 시야결손을 동반하는 안구 질환의 발병률은 증가하지만 이러한 질환의 조기 발견에 인공지능을 접목시킨 연구는 부족한 실정이다. 본 논문은 안구 질환 자가 검사용 인공 신경망을 학습시키기 위한 데이터 베이스 구축 방법을 제안한다. MNIST와 CIFAR-10을 합성하여 중첩 이미지 데이터셋인 G-Dataset을 생성하였고, 7개의 인공신경망에 학습시켜 최종적으로 90% 이상의 정확도를 얻음으로 그 유효성을 입증하였다. G-Dataset을 안구 질환 자가 검사용 딥러닝 모델에 학습시켜 모바일 어플에 적용하면 사용자가 주기적인 검사를 통해 안구 질환을 조기에 진단하고 치료할 수 있을 것으로 기대된다.

Perceptual Ad-Blocker Design For Adversarial Attack (적대적 공격에 견고한 Perceptual Ad-Blocker 기법)

  • Kim, Min-jae;Kim, Bo-min;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.871-879
    • /
    • 2020
  • Perceptual Ad-Blocking is a new advertising blocking technique that detects online advertising by using an artificial intelligence-based advertising image classification model. A recent study has shown that these Perceptual Ad-Blocking models are vulnerable to adversarial attacks using adversarial examples to add noise to images that cause them to be misclassified. In this paper, we prove that existing perceptual Ad-Blocking technique has a weakness for several adversarial example and that Defense-GAN and MagNet who performed well for MNIST dataset and CIFAR-10 dataset are good to advertising dataset. Through this, using Defense-GAN and MagNet techniques, it presents a robust new advertising image classification model for adversarial attacks. According to the results of experiments using various existing adversarial attack techniques, the techniques proposed in this paper were able to secure the accuracy and performance through the robust image classification techniques, and furthermore, they were able to defend a certain level against white-box attacks by attackers who knew the details of defense techniques.

The Robust Weight Conversion Learning for Classification of Occlusion Images (폐색 이미지 분류를 위한 강건한 가중치 전환 학습)

  • Jeonghoon Kim;Jeh-Kwang Ryu;Seongsik Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • An unexpected occlusion in a real life, not in a laboratory, can be more fatal to neural networks than expected. In addition, it is virtually impossible to create a network that learns all the environmental changes as well as occlusions. Therefore, we propose an alternative approach in which the architecture and number of parameters remain unchanged while adapting to occlusion circumstances. Learning method with the term Conversion Learning classifies them more robustly by converting the weights from various occlusion situations. The experiments on MNIST dataset showed a 3.07 [%p] performance improvement over the baseline CNN model in a situation where most objects are occluded and unknowing what occlusion will appear in advance. The experimental results suggest that Conversion Learning is an efficient method to respond to environmental changes such as occluded images.