• Title/Summary/Keyword: MNIST 데이터셋

Search Result 31, Processing Time 0.02 seconds

Comparative analysis of deep learning performance for Python and C# using Keras (Keras를 이용한 Python과 C#의 딥러닝 성능 비교 분석)

  • Lee, Sung-jin;Moon, Sang-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.360-363
    • /
    • 2022
  • According to the 2018 Kaggle ML & DS Survey, among the proportions of frameworks for machine learning and data science, TensorFlow and Keras each account for 41.82%. It was found to be 34.09%, and in the case of development programming, it is confirmed that about 82% use Python. A significant number of machine learning and deep learning structures utilize the Keras framework and Python, but in the case of Python, distribution and execution are limited to the Python script environment due to the script language, so it is judged that it is difficult to operate in various environments. This paper implemented a machine learning and deep learning system using C# and Keras running in Visual Studio 2019. Using the Mnist dataset, 100 tests were performed in Python 3.8,2 and C# .NET 5.0 environments, and the minimum time for Python was 1.86 seconds, the maximum time was 2.38 seconds, and the average time was 1.98 seconds. Time 1.78 seconds, maximum time 2.11 seconds, average time 1.85 seconds, total time 37.02 seconds. As a result of the experiment, the performance of C# improved by about 6% compared to Python, and it is expected that the utilization will be high because executable files can be extracted.

  • PDF