• 제목/요약/키워드: MNIST 데이터셋

검색결과 31건 처리시간 0.024초

공개 딥러닝 라이브러리에 대한 보안 취약성 검증 (Security Vulnerability Verification for Open Deep Learning Libraries)

  • 정재한;손태식
    • 정보보호학회논문지
    • /
    • 제29권1호
    • /
    • pp.117-125
    • /
    • 2019
  • 최근 다양한 분야에서 활용중인 딥러닝은 적대적 공격 가능성의 발견으로 위험성이 제기되고 있다. 본 논문에서는 딥러닝의 이미지 분류 모델에서 악의적 공격자가 생성한 적대적 샘플에 의해 분류 정확도가 낮아짐을 실험적으로 검증하였다. 대표적인 이미지 샘플인 MNIST데이터 셋을 사용하였으며, 텐서플로우와 파이토치라이브러리를 사용하여 만든 오토인코더 분류 모델과 CNN(Convolution neural network)분류 모델에 적대적 샘플을 주입하여 탐지 정확도를 측정한다. 적대적 샘플은 MNIST테스트 데이터 셋을 JSMA(Jacobian-based Saliency Map Attack)방법으로 생성한 방법과 FGSM(Fast Gradient Sign Method)방식으로 변형하여 생성하였으며, 분류 모델에 주입하여 측정하였을 때 최소 21.82%에서 최대 39.08%만큼 탐지 정확도가 낮아짐을 검증하였다.

딥러닝 기반의 딥 클러스터링 방법에 대한 분석 (Analysis of deep learning-based deep clustering method)

  • 권현;이준
    • 융합보안논문지
    • /
    • 제23권4호
    • /
    • pp.61-70
    • /
    • 2023
  • 클러스터링은 데이터의 정답값(실제값)이 없는 데이터를 기반으로 데이터의 특징벡터의 거리 기반 등으로 군집화를 하는 비지도학습 방법이다. 이 방법은 이미지, 텍스트, 음성 등 다양한 데이터에 대해서 라벨링이 없이 적용할 수 있다는 장점이 있다. 기존 클러스터링을 하기 위해 차원축소 기법을 적용하거나 특정 특징만을 추출하여 군집화하는 방법이 적용되었다. 하지만 딥러닝 기반 모델이 발전하면서 입력 데이터를 잠재 벡터로 표현하는 오토인코더, 생성 적대적 네트워크 등을 통해서 딥 클러스터링의 기술이 연구가 되고 있다. 본 연구에서, 딥러닝 기반의 딥 클러스터링 기법을 제안하였다. 이 방법에서 오토인코더를 이용하여 입력 데이터를 잠재 벡터로 변환하고 이 잠재 벡터를 클러스터 구조에 맞게 벡터 공간을 구성 및 k-평균 클러스터링을 하였다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하여 데이터셋으로 MNIST와 Fashion-MNIST을 적용하였다. 모델로는 컨볼루션 신경망 기반인 오토인코더 모델을 사용하였다. 실험결과로 k가 10일 때, MNIST에 대해서 89.42% 정확도를 가졌으며 Fashion-MNIST에 대해서 56.64% 정확도를 가진다.

계층별 모델 역추론 공격 (Layer-wise Model Inversion Attack)

  • 권현호;김한준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.69-72
    • /
    • 2024
  • 모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.

문자인식을 위한 공간 및 주파수 도메인 영상의 비교 (Comparison of Spatial and Frequency Images for Character Recognition)

  • ;최현영;고재필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.439-441
    • /
    • 2019
  • 딥러닝은 객체인식 분야에서에서 강력하고, 강건한 학습 알고리즘이다. 딥러닝에서 자주 활용되고, 객체인식 분야에서 최고의 성능을 보여주는 네트워크는 Convolutional Neural Network(CNN) 이다. 숫자 필기 인식을 위한 MNIST 데이터셋를 CNN으로 학습하면 성능이 매우 뛰어나다. 이는 MNIST 데이터 셋의 숫자들이 중앙에 잘 정렬되어 있기 때문이다. 하지만, 실제 데이터들은 중앙에 정렬이 잘 되어있지 않다. 이러한 경우에 CNN은 이전과 같이 우수한 성능을 보여주지 못한다. 이를 해결하기 위해, 우리는 FFT를 활용하여 이미지를 주파수 공간으로 변환하여 입력으로 주는 방법을 제안한다.

  • PDF

PCA 기반 특징 되먹임을 이용한 중요 영역 추출 (Extraction of Important Areas Using Feature Feedback Based on PCA)

  • 이승현;김도연;최상일;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.461-469
    • /
    • 2020
  • 본 논문에서는 손글씨 숫자 데이터셋, 얼굴 데이터셋의 중요영역 추출을 위한 PCA 기반의 특징되먹임방법을 제안한다. 이전의 LDA 기반의 특징되먹임 방법을 확장하여 PCA 기반 특징되먹임 방법이 제안된다. 제안된 방법에서 데이터에 차원 축소 머신러닝 알고리듬 중 하나인 PCA 기법을 적용하여 데이터를 중요한 특징 차원들로 축소한다. 차원 축소과정에서 도출되는 weight를 통해 축소된 각 차원 축에서의 데이터 중요 지점을 확인한다. 각 차원 축은 축의 고유값의 크기에 따라 전체 데이터에서의 가중치가 다르다. 이에 각 차원 축의 고유값의 크기에 비례하는 가중치를 부여하여 각 차원 축에서의 데이터 중요 지점을 합하는 연산 과정을 거친다. 연산 과정을 통해 얻어진 데이터에 Threshold를 적용하여 데이터의 중요 영역을 구한다. 그 후 도출된 데이터의 중요 영역에 원본데이터로 역매핑을 유도하여 원본 데이터 공간에서 중요영역을 선택한다. MNIST 데이터셋에 대한 실험 결과를 확인하고 기존의 LDA 기반의 특징되먹임 방법을 통한 결과와 비교를 하여 PCA기반 특징되먹임을 기반한 패턴 인식 방법의 유효성과 가능성을 확인한다.

Design of weighted federated learning framework based on local model validation

  • Kim, Jung-Jun;Kang, Jeon Seong;Chung, Hyun-Joon;Park, Byung-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.13-18
    • /
    • 2022
  • 본 논문에서는 학습에 참여하는 각 디바이스의 모델들로부터 성능검증에 따라 가중치를 두어 글로벌 모델을 업데이트하는 VW-FedAVG(Validation based Weighted FedAVG)를 두 가지 방식으로 제안 한다. 첫 번째 방식은 서버 검증(Server side Validation) 구조로 글로벌 모델을 업데이트 하기 전에 각 로컬 클라이언트 모델을 하나의 전체 검증 데이터셋을 통해 검증하도록 설계 했다. 두 번째는 클라이언트 검증(Client side Validation) 구조로 검증 데이터셋을 각 클라이언트에 고르게 분배하여 검증을 한 후 글로벌 모델을 업데이트 하는 방식으로 설계 했다. 전체 실험에 적용한 데이터셋은 MNIST, CIFAR-10으로 이미지 분류에 대해 IID, Non-IID 분포에서 기존 연구 대비 더 높은 정확도를 얻을 수 있었다.

패션 의류 영상 분류 딥러닝 (Fashion Clothing Image Classification Deep Learning)

  • 신성윤;왕광싱;신광성;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.676-677
    • /
    • 2022
  • 본 논문에서는 패션 의류 이미지의 빠르고 정확한 분류를 달성하기 위해 최적화된 동적 붕괴 학습률과 개선된 모델 구조를 가진 딥 러닝 모델을 기반으로 하는 새로운 방법을 제안한다. Fashion-MNIST 데이터 셋에서 제안된 모델을 사용하여 실험을 수행하고 CNN, LeNet, LSTM 및 BiLSTM의 방법과 비교한다.

  • PDF

합성곱 신경망 네트워크 구조 변화에 따른 숫자 인식률 비교 (Comparison of Number Recognition Rates According to Changes in Convolutional Neural Structure)

  • 이종찬;김영현;송특섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.397-399
    • /
    • 2022
  • 딥러닝을 적용한 기술 중 숫자 인식으로 예를 들 수 있다. 숫자 인식을 통하여 여러 분야에서 활용이 되고 있다. 숫자 인식을 가능하게 한 알고리즘 중 합성곱 신경망이 있다. 합성곱 신경망은 다양한 데이터들을 인식하는 데 사용되고 있다. MNIST 숫자 데이터셋을 활용하여 합성곱 신경망 구현 과정 중 깊게 레이어층을 쌓을수록 성능향상을 기대해볼 수 있다. 본 논문에서는 합성곱 레이어를 추가함으로써 성능향상을 76.96%에서 98.87의 정확도가 산출되어 약 21.91%의 정확도가 향상됨을 확인하였다.

  • PDF

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

오답 분석을 통한 이미지 분류 알고리즘의 특징 비교 (Comparison of Image Classification Algorithms through Incorrect Answers)

  • 김솔;이재환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.801-802
    • /
    • 2024
  • 본 연구에서는 MNIST 데이터셋을 활용하여 널리 사용되는 이미지 분류 알고리즘인ANN(Artificial Neural Network), CNN(Convolutional Neural Network), DNN(Deep Neural Network)의 성능을 분석한다. 주로 모델의 정확도에 초점을 맞추는 기존 연구와 달리, 본 연구에서는 각 모델이 잘못 분류한 오답을 중심으로 모델의 특징을 비교한다. 이를 통해 각 모델의 장단점을 파악하고 성능을 개선할 수 있을 것이라 기대한다.