• Title/Summary/Keyword: MMSI

Search Result 14, Processing Time 0.015 seconds

Studies on the Improvement and Analysis of Data Entry Error to the AIS System for the Traffic Ships in the Korean Coastal Area (우리나라 연안해역을 통항하는 선박에 대한 AIS 데이터 입력 오류의 분석 및 개선 방안 연구)

  • JEON, Jae-Ho;JEONG, Tae-Gweon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1812-1821
    • /
    • 2016
  • The purpose of this study is to survey input data error of ship automatic identification system (AIS) and suggest its improvement. The effects of AIS were observed. Input data error of AIS was investigated by dividing it into dynamic data, static data by targeting actual ships and its improvement method was suggested. The findings are as follows. Looking into accidents before and after AIS is enforced to install on the ship, total collision were decreased after AIS installed. Static data error of AIS took place mainly in the case that ship name, call sign, MMSI, IMO number, ship type, location of antenna (ship length and width) were wrongly input or those data were not input initially. Dynamic data error of AIS was represented by input error of ship's heading. As errors of voyage related data take place as well, confusion is made in sailing or ship condition. Counter measures against the above are as follows. First, reliability of AIS data information should be improved. Second, incessant concern and management should be made on the navigation officers.

Real-time position tracking of traffic ships by ARPA radar and AIS in Busan Harbor, Korea (부산항에서 ARPA 레이더와 AIS에 의한 통한선박의 실시간 위치추적)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2008
  • This paper describes on the consolidation of AIS and ARPA radar positions by comparing the AIS and ARPA radar information for the tracked ship targets using a PC-based ECDIS in Busan harbor, Korea. The information of AIS and ARPA radar target was acquired independently, and the tracking parameters such as ship's position, COG, SOG, gyro heading, rate of turn, CPA, TCPA, ship s name and MMSI etc. were displayed automatically on the chart of a PC-based ECDIS with radar overlay and ARPA tracking. The ARPA tracking information obtained from the observed radar images of the target ship was compared with the AIS information received from the same vessel to investigate the difference in the position and movement behavior between AIS and ARPA tracked target ships. For the ARPA radar and AIS targets to be consolidated, the differences in range, speed, course, bearing and distance between their targets were estimated to obtain a clear standards for the consolidation of ARPA radar and AIS targets. The average differences between their ranges, their speeds and their courses were 2.06% of the average range, -0.11 knots with the averaged SOG of 11.62 knots, and $0.02^{\circ}$ with the averaged COG of $37.2^{\circ}$, respectively. The average differences between their bearings and between their positions were $-1.29^{\circ}$ and 68.8m, respectively. From these results, we concluded that if the ROT, COG, SOG, and HDG informations are correct, the AIS system can be improved the prediction of a target ship's path and the OOW(Officer of Watch) s ability to anticipate a traffic situation more accurately.

Big Data Processing and Performance Improvement for Ship Trajectory using MapReduce Technique

  • Kim, Kwang-Il;Kim, Joo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.65-70
    • /
    • 2019
  • In recently, ship trajectory data consisting of ship position, speed, course, and so on can be obtained from the Automatic Identification System device with which all ships should be equipped. These data are gathered more than 2GB every day at a crowed sea port and used for analysis of ship traffic statistic and patterns. In this study, we propose a method to process ship trajectory data efficiently with distributed computing resources using MapReduce algorithm. In data preprocessing phase, ship dynamic and static data are integrated into target dataset and filtered out ship trajectory that is not of interest. In mapping phase, we convert ship's position to Geohash code, and assign Geohash and ship MMSI to key and value. In reducing phase, key-value pairs are sorted according to the same key value and counted the ship traffic number in a grid cell. To evaluate the proposed method, we implemented it and compared it with IALA waterway risk assessment program(IWRAP) in their performance. The data processing performance improve 1 to 4 times that of the existing ship trajectory analysis program.

Verification of VIIRS Data using AIS data and automatic extraction of nigth lights (AIS 자료를 이용한 VIIRS 데이터의 야간 불빛 자동 추출 및 검증)

  • Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.104-105
    • /
    • 2023
  • 해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.

  • PDF