• Title/Summary/Keyword: MMP-2/9

Search Result 636, Processing Time 0.036 seconds

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

Matrix Metalloproteinase-9 as a Prognostic Factor in Gastric Cancer: A Meta-Analysis

  • Zhang, Qiong-Wen;Liu, Lei;Chen, Ru;Wei, Yu-Quan;Li, Ping;Shi, Hua-Shan;Zhao, Yu-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2903-2908
    • /
    • 2012
  • Background: Matrix metalloproteinase-9 (MMP-9) is associated with disruption of basement membranes of blood vessels and promotion of metastasis through the lymphatics. However, its prognostic value for survival in patients with gastric cancer remains controversial. Method: We therefore conducted a meta-analysis of the published literature in order to clarify the impact of MMP-9. Clinical studies were selected for further analysis if they provided an independent assessment of MMP-9 in gastric cancer and reported analysis of survival data according to MMP-9 expression. Results: A total of 11 studies, covering 1700 patients, were included for meta-analysis. A summary hazard ratio (HR) of all studies and sub-group hazard ratios were calculated. The combined HR suggested that a positive MMP-9 expression had an impact on overall survival: 1.25 (95% confidence interval 1.11-1.40) in all eligible studies; 1.13 (1.06-1.20) in 8 studies detecting MMP-9 by immunohistochemistry; 1.36 (1.12-1.65) in 7 studies from Asia. Only one study for DFS showed a significant impact on disease free survival (HR 1.73, 95%CI 1.27-2.34). Conclusions: Our findings suggested that MMP-9 protein expression might be a factor for a poor prognosis in patients with gastric cancer. However, the association was rather weak, so that more prospective studies should further explore the prognostic impact of MMP-9 mRNA and correlations between MMP-9 and clinicopathological characteristics.

Effect of Fibroblast Growth Factor-2 on Migration and Proteinases Secretion of Human Umbilical Vein Endothelial Cells

  • Oh, In-Suk;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.379-384
    • /
    • 2004
  • Fibroblast growth factor-2 (FGF-2) is known to modulate numerous cellular functions in various cell types, including cell proliferation, differentiation, survival, adhesion, migration, and motility, and also in processes such as wound healing, angiogenesis, and vasculogenesis. FGF-2 regulates the expression of several molecules thought to mediate critical steps during angiogenesis. This study examines the mechanisms underlying FGF-2-induced cell migration, using human umbilical vein endothelial cells (HUVECs). FGF-2 induced the nondirectional and directional migration of endothelial cells, which are inhibited by MMPs and plasmin inhibitors, and induced the secretion of matrix metalloproteinase-3 (MMP3) and MMP-9, but not MMP-l and MMP-2. FGF-2 also induced the secretion of the tissue inhibitor of metalloproteinase-l (TIMP-I), but not of TIMP- 2. Also, the pan-PKC inhibitor inhibited FGF-2-induced MMP-9 secretion. It is, therefore, suggested that FGF-2 induces the migration of cultured endothelial cells by means of increased MMPs and plasmin secretion. Furthermore, FGF-2 may increase MMP-9 secretion by activating the PKC pathway.

Effects of (-)-Epigallocatechin-3-gallate on Brain Infarction and the Activity Change of Matrix Metalloproteinase-9 Induced by Middle Cerebral Artery Occlusion in Mice

  • Qian, Yong-Ri;Kook, Ji-Hyun;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 2007
  • Matrix metalloproteinases (MMPs) can degrade a wide range of extracellular matrix components. It has been reported that MMP-9 are activated after focal ischemia in experimental animals. (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, is a potent free radical scavenger and reduces the neuronal damage caused by oxygen free radicals. And it has been known that EGCG could reduce the infarction volume in focal brain ischemia and inhibit MMP-9 activity. To delineate the relationship between the anti-ischemic action and the MMP-9-inhibiting action of EGCG, we investigated the effect of EGCG on brain infarction and the activity of matrix metalloproteinase-9 induced by permanent middle cerebral artery occlusion (pMCAO) in ICR mice. EGCG (40 mg/kg, i.p. $15{\sim}30min$ prior to MCAO) significantly decreased infarction volume at 24 hr after MCAO. GM 6001 (50 mg/kg, i.p. $15{\sim}30min$ prior to MCAO), a MMP inhibitor, also significantly reduced infarction volume. In zymogram, MMP-9 activities began to increase at ipsilateral cortex at 2 hr after MCAO, and the increments of MMP-9 activities were attenuated by EGCG treatment. Western blot for MMP-9 also showed patterns similar to that of zymogram. These findings demonstrate that the anti-ischemic action of EGCG ire mouse focal cerebral ischemia involves its inhibitory effect on MMP-9.

Nitric Oxide on the MMP-2 expression by human gingival fibroblasts (치은섬유아세포의 MMP 발현에 대한 Nitric Oxide의 영향)

  • Shin, In-Sik;Yoon, Sang-Oh;Chung, Hyun-Ju;Koh, Jung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.2
    • /
    • pp.277-288
    • /
    • 2003
  • It has been suggested that increased number and activity of phagocytes in periodontitis lesion results in a high degree of reactive oxygen species (ROS) such as superoxide anion, hydrogen peroxide, nitric oxide and peroxynitrite. There are few reports on the relationship between ROS and MMPs expressions in gingival fibroblast. We studied to elucidate whether and how ROS, especially nitric oxide affects the MMP expression. Human gingival fibroblasts and HTl080 cells (human fibrosarcoma sell line as reference) were grown in DMEM supplemented with 10 mM HEPES, 50 mg/L gentamicin, and 10% heat inactivated fetal bovine serum with addition of various reactive oxygen species (ROS). Culture media conditioned by cells were examined by gelatin zymography. HT1080 cells expressed proMMP-2 and proMMP-9, but human gingival fibroblasts (HGF) produced only proMMP-2. Hydrogen peroxide upregulated MMP-9 expression in HT1080 cells, whereas in human gingival fibroblast SNP treatment showed marked increase in MMP-2 level compared to other ROS. These results suggest that the effects of ROS on MMPs expressions are cell-type specific. RT-PCR for MMP-2 and TIMP-2 m-RNA were performed using total RNA from cultured cells under the influence various kinase inhibitors. In HT1080 cells, treatment with FPTI III (Ras processing inhibitor) and LY294002 (PI3-kinase inhibitor) resulted in inhibition of MMP-2 and MMP-9 expressions, suggesting that Ras/P13-kinase pathway is important for MMPs expression in HT1080 cells. In gingival fibroblasts, treatment with FPTI III and PDTC (NF-kB inhibitor) showed marked decrease in MMP-2 regardless of the of SNP , suggesting that Ras/NF-kB could be the key pathway for NO-induced MMP-2 expression in gingival fibroblasts. This study showed that ROS, especially nitric oxide, could be the critical mediator of periodontal disease progression through control of MMP-2 expression in gingival fibroblasts possibly via Ras/NF-kB pathway.

Expression Profiles of Secretory Leucocyte Protease Inhibitor, MMP9, and Neutrophil Elastase in the Mouse Uterus

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • The tremendous changes of uterine endometrium are observed during early pregnancy and protease and their inhibitors are involved in regulation of cell proliferation and remodeling of the tissues through remodeling the extracellular matrix (ECM). Some of the proteases and protease inhibitors have been suspected to a factor in endometrial changes but many parts of their expression profiles and the physiological roles are not uncovered. To evaluate the functional roles of them, in this study the expression profiles of proteases and protease inhibitors were analyzed using real-time quantitative PCR analysis. Mmp9 (matrix metalloproteinase 9) mRNA levels peaked on day 4 at the time of implantation. On the other hand, Ela2 (neutrophil elastase, NE) mRNA levels were peaked on day 2 of pregnancy. Its expression were decreased until day 4 of pregnancy but increased rapidly until day 7 of pregnancy and decreased again. NE inhibitor Slpi (secretory leukocyte protease inhibitor, SLPI) mRNA levels were related with the implantation stage and with the levels of Ela2. At the time of implantation the expression levels of Slpi mRNA were about 5 times higher than the Ela2 mRNA in the uterus. In the implantation stage embryos, Mmp9 specific mRNA was only detected at the blastocyst. On the other hand, the expression level of SLPI was higher than that of the Ela2 mRNA at blastocyst and 4.5 day p.c. embryos. Based on these results it is suggested that MMP9, SLPI, and NE have important physiological role in embryo implantation both in uterus and embryos.

Effect of Fibroblast Growth Factor-2 on the Sprouting in Vascular Endothelial Cells (혈관내피세포의 발아에 미치는 fibroblast growth factor-2의 효과)

  • 김환규
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • The sprouting of vascular endothelial cells is an initial step in angiogenesis. Matrix metalloproteinases can associate with integrin on the surface of endothelial cells, thereby promoting angiogenesis. The purpose of this study was to test if fibroblast growth factor-2 (FGF-2) can regulate the sprouting in porcine pulmonary artery endothelial cells. FGF-2 induced sprouting and secretion of MMP-2 and plasmin. FGF-2 also induced the expression of integrin Mac-1, which is inhibited IS20I. Addition of BB-94, a 2-antiplasmin and IS20I inhibited FGF-2-induced sprouting activity. Therefore, FGF-2-induced sprouting activity in PPAECs may be accomplished by secretion of proteinases such as MMP-2 and plasmin and integrin expression.

Aesculetin Inhibits Cell Invasion through Inhibition of MMP-9 Activity and Antioxidant Activity (Aesculetin의 항산화 활성과 MMP-9 활성 억제를 통한 암세포 침윤 억제)

  • Hong, Sugyeong;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.673-679
    • /
    • 2016
  • The development of safe and effective anti-cancer compounds has been seriously required to prevent and treat development of tumor in recent years. Among them, natural compounds derived traditional medicinal stuffs have been paid to attention as an anti-cancer candidate. In this study, aesculetin is a main component of a widely known as a medicinal stuff. It was reported that aesculetin has various biological effects such as anti-inflammatory and anti-bacterial, but its effect related to cell invasion was not discovered. Therefore, in this study, the effect of aesculetin on antioxidant and matrix metalloproteases (MMPs) was investigated in human fibrosarcoma cells, HT1080. First of all, aesculetin showed the scavenging activity of DPPH radical and reducing power in a dose dependent manner. As a result of cytotoxicity, the nontoxic concentration of aesculetin was below 2 μM in HT1080 cells performed by MTT assay. In addition, aesculetin displayed the inhibitory effect on MMP-9 activity related to cell invasion in experiment carried out by gelatin zymography assay. Furthermore, aesculetin increased the expression level of TIMP-1 but decreased the expression level of MMP-9 stimulated with PMA in western blot assay. Furthermore, aesculetin remarkably inhibited cell invasion related to metastasis a dose dependent manner. Above results suggest that aesculetin could exert chemopreventive effect through inhibition of activity and expression of MMP-9 related to cell invasion.

Neuroprotective Effects of Agrimoniae Herba against Intrastriatal Hemorrhage in Rats (선학초(仙鶴草)가 선조체내출혈(線條體內出血) 흰쥐의 뇌조직 손상에 미치는 영향)

  • Choi, Young-Seuk;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Objects : This study was performed in order to evaluate the effects of Agrimoniae herba (AH) ethanol extract on intrastriatal hemorrhage (ISH). Method : ISH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. AH was orally given once a day for 3 days after ISH. Hematoma volume and percentage edema were examined. Immunohistochemistry was processed for iNOS, c-Fos, MMP-9, and MMP-12 expressions in the brain sections and each immuno-labeling were calculated with image analysis. Results : results are as follows; 1. AH reduced the hematoma volume and percentage edema of the ISH-induced rat brain. 2. AH swollen apoptotic bodies and neurons in the peri-hematoma regions of the ISH-induced rat brain. 3. AH significantly reduced c-Fos, MMP-9 and MMP-12 positive cells in the peri-hematoma regions of the ISH-induced rat brain. 4. AH swollen iNOS expressions in the peri-hematoma regions of the ISH-induced rat brain. Conclusion : These results suggest that AH plays an anti-apoptotic neuroprotective effect through control of ISH, suppression of c-Fos, and down-regulation of MMP-9 and MMP-12 expressions in the brain tissues.

Effect of Paecilomyces tenuipes extract on angiogenesis in prostate cancer cells (눈꽃동충하초 추출물이 전립선 암 세포 내 혈관신생인자 발현에 미치는 영향)

  • Choi, Young-Jin;Fan, Meiqi;Choi, Eun-Ju;Kim, Eun-kyung
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.244-248
    • /
    • 2017
  • In this study, the inhibitory effect of Paecilomyces tenuipes extract on PSA and angiogenesis-related factor expression levels were investigated in human prostate cancer cells, LNCaP. P. tenuipes extract significantly inhibited PSA expression in a dose-dependent manner. We also investigated the inhibitory effect of P. tenuipes extract on the expression of angiogenesis-related genes including VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2. P. tenuipes extract significantly down-regulated the expression of MMP-2 and MMP-9 in a dose-dependent manner. On the contrary, P. tenuipes increased the expression of TIMP-1 and TIMP-2. Our findings indicate that P. tenuipes exhibits an inhibitory effect on angiogenesis in human prostate cancer cells.