• Title/Summary/Keyword: MMIC amplifier

Search Result 178, Processing Time 0.024 seconds

Design and Fabrication of 25 W Ka-Band SSPA Based on GaN HPA MMICs (GaN HPA MMIC 기반 Ka 대역 25 W SSPA 설계 및 제작)

  • Ji, Hong-gu;Noh, Youn-sub;Choi, Youn-ho;Kwak, Chang-soo;Youm, In-bok;Seo, In-jong;Park, Hyung-jin;Jo, In-ho;Nam, Byung-chang;Kong, Dong-uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1083-1090
    • /
    • 2015
  • We designed and manufactured Ka-band SSPA include drive amplifier and high power amplifier MMICs by $0.15{\mu}m$ GaN commercial process. Also, we fabricated main components micro-strip line to WR28 waveguide transition and WR28 wave guide power combiner for Ka-band SSPA. This Ka-band SSPA shows saturated output power 44.2 dBm, power added efficiency 16.6 % and power gain 39.2 dB at 29~31 GHz frequency band.

A Study on the Power Amplifier Development using Traveling wave combiner in X-band (Traveling wave 전력 결합기를 이용한 X-대역 전력증폭기 개발에 관한 연구)

  • Sun, Gwon-Seok;Ha, Sung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1331-1336
    • /
    • 2014
  • In this study, we have implemented a PAM(Power Amplifier Module) with 25W output power using by cooperate divider/Combiner circuit in X-band to minimize combine loss on a Al2O3 substrate. The PAM(Power Amplifier Module) is consisted of MMIC and 10way traveling wave divider/Combiner with proposed structure what have showed that 45.2dBm output power, 16dB gain, PAE 26 % and 17dBc@44dBm IMD3 characteristics. This combine/divider structure can be used when multistage passive divider and combiner needs. especially, power amplifier with very compact size.

A Variable-Gain Low-Voltage LNA MMIC Based on Control of Feedback Resistance for Wireless LAN Applications (피드백 저항 제어에 의한 무선랜용 가변이득 저전압구동 저잡음 증폭기 MMIC)

  • Kim Keun Hwan;Yoon Kyung Sik;Hwang In Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1223-1229
    • /
    • 2004
  • A variable-gain low-voltage low noise amplifier MMIC operating at 5GHz frequency band is designed and implemented using the ETRI 0.5$\mu\textrm{m}$ GaAs MESFET library process. This low noise amplifier is designed to have the variable gain for adaptive antenna array combined in HIPERLAN/2. The feedback circuit of a resistor and channel resistance controlled by the gate voltage of enhancement MESFET is proposed for the variable-gain low noise amplifier consisted of cascaded two stages. The fabricated variable gain amplifier exhibits 5.5GHz center frequency, 14.7dB small signal gain, 10.6dB input return loss, 10.7dB output return loss, 14.4dB variable gain, and 2.98dB noise figure at V$\_$DD/=1.5V, V$\_$GGl/=0.4V, and V$\_$GG2/=0.5V. This low noise amplifier also shows-19.7dBm input PldB, -10dBm IIP3, 52.6dB SFDR, and 9.5mW power consumption.

Low Conversion Loss and High Isolation W-band MMIC Mixer Module (낮은 변환 손실 및 높은 격리 특성의 W-band MMIC 믹서 모듈)

  • An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • In this paper, we report on a high performance 94 GHz MMIC mixer module using 0.1-um metamorphic high electron mobility transistors (MHEMTs). A modified resistive mixer with a RF amplifier was proposed in this work for low conversion loss and high LO-RF isolation. The MMIC mixer module was fabricated using a MMIC chip and CPW-waveguide transitions. The fabricated mixer chip and module showed a low conversion loss of 6.3 dB and 9.5 dB, and LO-RF isolations of 24.8 and 30.4 dB at 94 GHz, respectively. This results are superior to those of previously W-band (75-110 GHz) MMIC mixers.

Monolithic Integrated Amplifier for Millimeter Wave Band (밀리미터파 대역 단일 집적 증폭기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3917-3922
    • /
    • 2010
  • In this paper, 3 stage amplifier MMIC was designed and fabricated with U-band optimized epitaxal pHEMT that produced by large signal characterization and modeling for 60 GHz band. The pHEMT used in this paper, the gate $0.12\;{\mu}m$ length and total gate width of $100\;{\mu}m$, $200\;{\mu}m$ has been modeled using the large signal designed with negative feedback and MCLF instead of MIM capacitor for improving stability. Fabricated MMIC $2.5{\times}1.5mm^2$ size, current about 40 mA, operating frequency 59.5~60.5 GHz, gain 19.9~18.6 dB, input matching characteristics -14.6~-14.7 dB, output matching characteristics -11.9~-16.3 dB and output -5 dBm characteristics were obtained.

W-band Frequency Synthesizer Development Based on Interposer Technology Using MMIC Chip Design and Fabrication Results

  • Kim, Wansik;Yeo, Hwanyong;Lee, Juyoung;Kim, Young-Gon;Seo, Mihui;Kim, Sosu
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • In this paper, w-band frequency synthesizer was developed for frequency-modulated continuous wave (FMCW) radar sensors. To achieve a small size and high performance, We designed and manufactured w-band MMIC chips such as up-converter one-chip, multiplier, DA (Drive Amplifier) MMIC(Monolithic Microwave Integrated Circuit), etc. And interposer technology was applied between the W-band multiplier and the DA MMIC chip. As a result, the measured phase noise was -106.10 dBc@1MHz offset, and the frequency switching time of the frequency synthesizer was less than 0.1 usec. Compared with the w-band frequency synthesizer using purchased chips, the developed frequency synthesizer showed better performance.

Analysis and Development Results of W-band Transceiver Module using Open MMIC Chips (국내개발 MMIC칩을 적용한 W-Band 송수신모듈의 분석 및 제작 결과)

  • Kim, Wansik;Jung, Jooyong;Kim, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.163-168
    • /
    • 2018
  • We developed W-band transceiver module using open MMIC chip such as receiver single chip and transmitting power amplifier. In order to calculate the noise figure and output power value, we analyzed the W-band transition loss from the antenna to MMIC connection and constructed the 12 channel receiver and the 5 channel transmitter. And compared with the results of the measurement. As a result, the output power of the transmitter was similar to the analytical results and the measured results at room temperature and environmental conditions. The noise figure of the receiver was also similar, but some channels showed error of about 3 dB due to manufacturing error.

W-band Single-chip Receiver MMIC for FMCW Radar (FMCW 레이더용 W-대역 단일칩 수신기 MMIC)

  • Lee, Seokchul;Kim, Youngmin;Lee, Sangho;Lee, Kihong;Kim, Wansik;Jeong, Jinho;Kwon, Youngwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, a W-band single-chip receiver MMIC for FMCW(Frequency-modulated continuous-wave) radar is presented using $0.15{\mu}m$ GaAs pHEMT technology. The receiver MMIC consists of a 4-stage low noise amplifier(LNA), a down-converting mixer and a 3-stage LO buffer amplifier. The LNA is designed to exhibit a low noise figure and high linearity. A resistive mixer is adopted as a down-converting mixer in order to obtain high linearity and low noise performance at low IF. An additional LO buffer amplifier is also demonstrated to reduce the required LO power of the W-band mixer. The fabricated W-band single-chip receiver MMIC shows an excellent performance such as a conversion gain of 6.2 dB, a noise figure of 5.0 dB and input 1-dB compression point($P_{1dB,in}$) of -12.8 dBm, at the RF frequency of $f_0$ GHz, LO input power of -1 dBm and IF frequency of 100 MHz.

An X-Ku Band Distributed GaN LNA MMIC with High Gain

  • Kim, Dongmin;Lee, Dong-Ho;Sim, Sanghoon;Jeon, Laurence;Hong, Songcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.818-823
    • /
    • 2014
  • A high-gain wideband low noise amplifier (LNA) using $0.25-{\mu}m$ Gallium-Nitride (GaN) MMIC technology is presented. The LNA shows 8 GHz to 15 GHz operation by a distributed amplifier architecture and high gain with an additional common source amplifier as a mid-stage. The measurement results show a flat gain of $25.1{\pm}0.8dB$ and input and output matching of -12 dB for all targeted frequencies. The measured minimum noise figure is 2.8 dB at 12.6 GHz and below 3.6 dB across all frequencies. It consumes 98 mA with a 10-V supply. By adjusting the gate voltage of the mid-stage common source amplifier, the overall gain is controlled stably from 13 dB to 24 dB with no significant variations of the input and output matching.

A 6-16 GHz GaN Distributed Power Amplifier MMIC Using Self-bias

  • Park, Hongjong;Lee, Wonho;Jung, Joonho;Choi, Kwangseok;Kim, Jaeduk;Lee, Wangyong;Lee, Changhoon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.105-107
    • /
    • 2017
  • The self-biasing circuit through a feedback resistor is applied to a gallium nitride (GaN) distributed power amplifier (PA) monolithic microwave circuit (MMIC). The self-biasing circuit is a useful scheme for biasing depletion-mode compound semiconductor devices with a negative gate bias voltage, and is widely used for common source amplifiers. However, the self-biasing circuit is rarely used for PAs, because the large DC power dissipation of the feedback resistor results in the degradation of output power and power efficiency. In this study, the feasibility of applying a self-biasing circuit through a feedback resistor to a GaN PA MMIC is examined by using the high operation voltage of GaN high-electron mobility transistors. The measured results of the proposed GaN PA are the average output power of 41.1 dBm and the average power added efficiency of 12.2% over the 6-16 GHz band.