• Title/Summary/Keyword: MMG-model

Search Result 38, Processing Time 0.025 seconds

A Study on the Influence of Mathematical Models of Manoeuvrability on the Simulation of Ship Berthing Operation (선박의 접안 시뮬레이션에서 조종수학모델의 영향에 관한 고찰)

  • Chung, Kwang Sic;Lee, Seung-Keon;Jeong, Jae-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.15-16
    • /
    • 2014
  • As trade cross the world is increasing these days, safe and effective management of harbour system is becoming important issue. With this background, the development of automatic time-domain simulation programme for ship berthing operation has been being peformed and PD (Proportional Derivative) controller has been used to control the speed and the heading angle of ships. This paper provides feasibility study for developing the time-domain simulation programme for berthing operation of ships with analysing advantages and drawbacks of the two different mathematical models, one is for low advance speed of ships by Kose (1984) and the other is MMG model for normal advance speed, through the simulations with various initial heading angles and positions of the ship.

  • PDF

A Study on the Automatic Control for Collision Avoidance of the Ships around the Coast (선박의 충돌회피를 위한 자동제어에 관한연구)

  • Kim, Ju-Han;Lee, Seung-Keon;Lee, Sang-Eui;Bae, Cheol-Han
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.75-76
    • /
    • 2007
  • A mis-handling of the ship operators show high rate among the whole marine accidents. Since the port conditions have been getting worse. also as her size and speed increase, collision risk has been increased so that ship needs the automatic control system for collision. From that purpose, this research has been proceeded. The research has based on the MMG mathematical model, used Surge-Sway-Yaw motion equation, the information from the position and estimated time of collision point (DCPA and TCPA) to determine the collision risk with Fuzzy theory. To verify this system, ship was simulated when the ship encountered multitude of ships around the coast. The simulation result shows good application in avoiding ship collisions around the coast.

  • PDF

A Study on Automatic Control for Collision Avoidance of a Ship under Appearance of Multi-vessels (다수선박의 충돌회피를 위한 자동제어에 관한 연구)

  • Yoon Ji-Hyun;Lee Seung-Keon;Im Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.29-34
    • /
    • 2005
  • A mis-handling of the ship operators, treated as one qf the main causes of a ship accidents, normally has caused a ship to collide with obstacles like a reef, a rock and other ships etc. since their ability has been declining little by little even though the port conditions have been getting worse. The ship needs a highly sophisticated technology as her size and speed increase as the ship have been demanded. For example, Auto Avoidance Control System gradually has been receiving a growing interest to control the entire ship safely. From that purpose, this research has been done. The research was based on the MMG mathematical model, used Surge-Sway-Yaw-Roll motion equation and Fuzzy theory for calculating the collision-risk Also the research successively was done when the ship encountered continual multitude ships.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

Study on Improving the Navigational Safety Evaluation Methodology based on Autonomous Operation Technology (자율운항기술 기반의 선박 통항 안전성 평가 방법론 개선 연구)

  • Jun-Mo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • In the near future, autonomous ships, ships controlled by shore remote control centers, and ships operated by navigators will coexist and operate the sea together. In the advent of this situation, a method is required to evaluate the safety of the maritime traffic environment. Therefore, in this study, a plan to evaluate the safety of navigation through ship control simulation was proposed in a maritime environment, where ships directly controlled by navigators and autonomous ships coexisted, using autonomous operation technology. Own ship was designed to have autonomous operational functions by learning the MMG model based on the six-DOF motion with the PPO algorithm, an in-depth reinforcement learning technique. The target ship constructed maritime traffic modeling data based on the maritime traffic data of the sea area to be evaluated and designed autonomous operational functions to be implemented in a simulation space. A numerical model was established by collecting date on tide, wave, current, and wind from the maritime meteorological database. A maritime meteorology model was created based on this and designed to reproduce maritime meteorology on the simulator. Finally, the safety evaluation proposed a system that enabled the risk of collision through vessel traffic flow simulation in ship control simulation while maintaining the existing evaluation method.

Design of Adaptive Neural Tracking Controller for Pod Propulsion Unmanned Vessel Subject to Unknown Dynamics

  • Mu, Dong-Dong;Wang, Guo-Feng;Fan, Yun-Sheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2365-2377
    • /
    • 2017
  • This paper addresses two interrelated problems concerning the tracking control of pod propulsion unmanned surface vessel (USV), namely, the modeling of pod propulsion USV, and tracking controller design. First, based on MMG modeling theory, the model of pod propulsion USV is derived. Furthermore, a practical adaptive neural tracking controller is proposed by backstepping technique, neural network approximation and adaptive method. Meanwhile, unlike some existing tracking methods for surface vessel whose control algorithms suffer from "explosion of complexity", a novel neural shunting model is introduced to solve the problem. Using a Lyapunov functional, it is proven that all error signals in the system are uniformly ultimately bounded. The advantages of the paper are that first, the underactuated characteristic of pod propulsion USV is proved; second, the neural shunting model is used to solve the problem of "explosion of complexity", and this is a combination of knowledge in the field of biology and engineering; third, the developed controller is able to capture the uncertainties without the exact information of hydrodynamic damping structure and the sea disturbances. Numerical examples have been given to illustrate the performance and effectiveness of the proposed scheme.

The Effect of Hull Appendages on Maneuverability of Naval Ship by Sensitivity Analysis (민감도 해석을 통한 선체 부가물이 함정의 조종성능에 미치는 영향 분석)

  • Kim, Dae Hyuk;Rhee, Key-Pyo;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • Naval ships have hull appendages which are more exposed to the outside because of its small block coefficient compared with commercial ships. These exposed hull appendages like skeg, strut and shaft line affect the maneuverability of a ship. The effect of hull appendages has considered at initial design stage to estimate more accurate maneuverability. In this paper, sensitivity analysis is used to analyze the effect on maneuverability by hull appendages. 3 DOF maneuvering equations based on Mathematical Modelling Group (MMG) model are used and propeller & rudder model are modified to reflect the characteristics of twin propeller & twin rudder. Numerical maneuvering simulations (Turning test, Zig-zag test) for benchmark naval vessel, David Taylor Model Basin (DTMB) 5415 are performed. In every simulation, it is calculated that stability indices and maneuverability characteristics (Tactical Dia., Advance, 1st Overshoot, Time of complete cycle) with respect to the parameters (area times lift coefficient slope, attachment location) of hull appendages. As a result, two regression formulas are established. One is the relation of maneuverability characteristics and stability indices and the other is the relation of stability indices and hull appendages.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

On the Mathematical Model for Estimating Manoeuvring Performance of Ships (선박의 조종성능평가를 위한 수학모델에 관한 연구)

  • 손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.57-73
    • /
    • 1989
  • This paper presents a practical method to predict the characteristics of ship manoeuvring motions. A attempt is made to calculate the manoeuvring motions utilizing principal particulars of ship hull, properller and rudder as basic input data. The mathematical models, which describe the ship manoeuvring motions, are developed on the basis of MMG(5), Inoue(17), Hooft(18) and so on. Calcuations of manoeuvring motions for three kinds of typical characteristics, namely turning motion, zig-zag manoeuvre response and steady turning performance, are carried out. In order to examine the validity of the calculation method of this paper, simulations are run for seven merchant ships employed by Inoue(4). The computed results by present method are compared with full scale trials and Inoue's calculations(4). It can be concluded that the calculation method proposed in this paper is useful and pwoerful for prediction of characteristics of ship manoeuvring motions at the initial design phase or the application study on manoeuvring motions.

  • PDF

Numerical Simulation of Towing Stability of Barges in Calm Water (정수 중 바지선의 예인안정성에 관한 수치 시뮬레이션)

  • Nam, Bo Woo;Park, Ji Young;Hong, Sa Young;Sung, Hong Gun;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2013
  • This paper presents the results of a numerical study on the towing stability of barges. Towing simulations were carried out by using two different numerical models (MMG model and cross-flow model). Stability criteria are also suggested based on the analysis of the linearized governing equations for towed vessel motion. In order to validate the present numerical models, the experimental data of Yasukawa et al. (2006) were used. Simulations were conducted for single and double barges under constant towing speed and direction conditions. The time histories of the heading angle, yaw rate, and towline tension were compared between the numerical results and experiments. The effects of the towline length on the slewing frequency and maximum heading angle were also observed. In addition, a series of numerical simulations using variable hydrodynamic coefficients were performed to investigate the effects of the hydrodynamic forces on the towing stability.