• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.03 seconds

A structural learning of MLP classifiers using species genetic algorithms (종족 유전 알고리즘을 이용한 MLP 분류기의 구조학습)

  • 신성효;김상운
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.48-55
    • /
    • 1998
  • Structural learning methods of MLP classifiers for a given application using genetic algorithms have been studied. In the methods, however, the search space for an optimal structure is increased exponentially for the physical application of high diemension-multi calss. In this paperwe propose a method of MLP classifiers using species genetic algorithm(SGA), a modified GA. In SGA, total search space is divided into several subspaces according to the number of hidden units. Each of the subdivided spaces is called "species". We eliminate low promising species from the evoluationary process in order to reduce the search space. experimental results show that the proposed method is more efficient than the conventional genetic algorithm methods in the aspect of the misclassification ratio, the learning rate, and the structure.structure.

  • PDF

EXTENSION OF MULTI-DIMENSIONAL LIMITING PROCESS ONTO THREE-DIMENSIONAL UNSTRUCTURED GRIDS (다차원 공간 제한 기법의 3차원 비정렬 격자계로 확장)

  • Park, J.S.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.404-411
    • /
    • 2010
  • The present paper deals with the continuous work of extending multi-dimensional limiting process (MLP), which has been quite successfully proposed on two- and three-dimensional structured grids, onto the unstructured grids. The basic idea of the present limiting strategy is to control the distribution of both cell-centered and cell-vertex physical properties to mimic a multi-dimensional nature of flow physics, which can be formulated as so called the MLP condition. The MLP condition can guarantee a high-order spatial accuracy without yielding spurious oscillations. Recently, MLP slope limiter was proposed based on the MUSCL-type reconstruction in two-dimensional case and it can be readily extended to three-dimensional case. Through various numerical analyses and extensive computations, it is observed that the proposed limiters are quite effective in controlling numerical oscillations and very accurate in capturing both discontinuous and continuous multi-dimensional flow features on 3-D tetrahedral grids.

  • PDF

Isolated Word Recognition Using a Speaker-Adaptive Neural Network (화자적응 신경망을 이용한 고립단어 인식)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF

MLP 분리(分離)가 기업(企業)의 시장가치(市場價値)에 미치는 영향(影響)

  • Jang, Tae-Hong
    • The Korean Journal of Financial Management
    • /
    • v.9 no.1
    • /
    • pp.177-192
    • /
    • 1992
  • 본 논문에서는 MLP(master limited partnership) 분리(分離)라는 기업구조(企業構造) 개편(改編)(restructing)이 기업의 시장가치에 미치는 영향을 사건연구(事件硏究)(event study) 방법론을 통하여 분석하였다. 실증분석의 결과 MLP 분리(分離)로 인한 모기업의 주가상승이 통계적으로 유의한 것으로 나타났다. 세금혜택(稅金惠澤), 대리인(代理人) 문제(間題), 자금조달(資金調達) 그리고 자산증권화(資産證券化)(securitization) 둥의 측면에서 MLP 분리(分離)의 경제적 의미를 살펴보았다. 경영자에 의한 자유현금(自由現金)흐름(free cashflow)남용의 방지를 통한 대리인(代理人) 비용(費用)(agency cost)의 감소, 정보불균형(情報不均衡)에 관련된 자금조달상의 불이익의 극복가능성이 모기업의 주가상승을 가져올 수 있는 보다 중요한 요인들로 제시되었다. 이러한 요인들의 상대적 중요성에 대한 실증분석 특히 자유현금흐름 가설의 검증이 앞으로의 과제다.

  • PDF

Comparison of Performance between MLP and RNN Model to Predict Purchase Timing for Repurchase Product (반복 구매제품의 재구매시기 예측을 위한 다층퍼셉트론(MLP) 모형과 순환신경망(RNN) 모형의 성능비교)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.111-128
    • /
    • 2017
  • Existing studies for recommender have focused on recommending an appropriate item based on the customer preference. However, it has not yet been studied actively to recommend purchase timing for the repurchase product despite of its importance. This study aims to propose MLP and RNN models based on the only simple purchase history data to predict the timing of customer repurchase and compare performances in the perspective of prediction accuracy and quality. As an experiment result, RNN model showed outstanding performance compared to MLP model. The proposed model can be used to develop CRM system which can offer SMS or app based promotion to the customer at the right time. This model also can be used to increase sales for repurchase product business by balancing the level of order as well as inducing repurchase of customer.

Optimal Design of Fuzzy Hybrid Multilayer Perceptron Structure (퍼지 하이브리드 다층 퍼셉트론구조의 최적설계)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2977-2979
    • /
    • 2000
  • A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.

  • PDF

Learning Model and Application of New Preceding Layer Driven MLP Neural Network (새로운 Preceding Layer Driven MLP 신경회로망의 학습 모델과 그 응용)

  • 한효진;김동훈;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.27-37
    • /
    • 1991
  • In this paper, the novel PLD (Preceding Layer Driven) MLP (Multi Layer Perceptron) neural network model and its learning algorithm is described. This learning algorithm is different from the conventional. This integer weights and hard limit function are used for synaptic weight values and activation function, respectively. The entire learning process is performed by layer-by-layer method. the number of layers can be varied with difficulty of training data. Since the synaptic weight values are integers, the synapse circuit can be easily implemented with CMOS. PLD MLP neural network was applied to English Characters, arbitrary waveform generation and spiral problem.

  • PDF

A Study on Data Augmentation based on Mixup Algorithm for MLP Model (MLP 모델을 위한 Mixup 알고리즘 기반의 Data Augmentation에 관한 연구)

  • Hyun, Sun-young;Kim, Pil-song;Hwang, Seong-yeon;Ha, Young-guk
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.694-696
    • /
    • 2021
  • 본 논문에서는 CNN 모델에서 학습에 사용할 이미지 데이터를 늘리기 위해 사용되는 Mixup 알고리즘을 MLP 모델에 사용하는 데이터셋에 적용하여 data augmentation 효과를 얻을 수 있는 지에 대한 테스트를 수행했다. 테스트 결과 MLP 모델에 사용할 데이터셋에도 Mixup 알고리즘으로 data augmentation 효과를 기대할 수 있음을 보여준다.

A Study on the Performance Improvement of MLP Model for Kodály Hand Sign Scale Recognition

  • Na Gyeom YANG;Dong Kun CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • In this paper, we explore the application of Kodaly hand signs in enhancing children's music education, performances, and auditory assistance technologies. This research focuses on improving the recognition rate of Multilayer Perceptron (MLP) models in identifying Kodaly hand sign scales through the integration of Artificial Neural Networks (ANN). We developed an enhanced MLP model by augmenting it with additional parameters and optimizing the number of hidden layers, aiming to substantially increase the model's accuracy and efficiency. The augmented model demonstrated a significant improvement in recognizing complex hand sign sequences, achieving a higher accuracy compared to previous methods. These advancements suggest that our approach can greatly benefit music education and the development of auditory assistance technologies by providing more reliable and precise recognition of Kodaly hand signs. This study confirms the potential of parameter augmentation and hidden layers optimization in refining the capabilities of neural network models for practical applications.

ELM based short-term Water Demand Prediction for Effective Operation of Water Treatment Plant (정수장 운영효율 향상을 위한 ELM 기반 단기 물 수요 예측)

  • Choi, Gee-Seon;Lee, Dong-Hoon;Kim, Sung-Hwan;Lee, Kyung-Woo;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we develop an ELM(Extreme Learning Machine) based short-tenn water demand prediction algorithm which solves overfitting problem of MLP(Multi Layer Perceptron) and has quick training time. To show effectiveness of proposed method, we analyzed time series data collected in A water treatment plant at Chung-Nam province during $2007{\sim}2008$ years and used the selected data for the verification of developed algorithm. According to the experimental results, MLP model showed 5.82[%], but the proposed ELM based model showed 5.61[%] with respect to MAPE, respectively. Also, MLP model needed 7.57s training time, but ELM based model was 0.09s. Therefore, the proposed ELM based short-term water demand prediction model can be used to operate the water treatment plant effectively.