• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.022 seconds

Applying NIST AI Risk Management Framework: Case Study on NTIS Database Analysis Using MAP, MEASURE, MANAGE Approaches (NIST AI 위험 관리 프레임워크 적용: NTIS 데이터베이스 분석의 MAP, MEASURE, MANAGE 접근 사례 연구)

  • Jung Sun Lim;Seoung Hun, Bae;Taehoon Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.21-29
    • /
    • 2024
  • Fueled by international efforts towards AI standardization, including those by the European Commission, the United States, and international organizations, this study introduces a AI-driven framework for analyzing advancements in drone technology. Utilizing project data retrieved from the NTIS DB via the "drone" keyword, the framework employs a diverse toolkit of supervised learning methods (Keras MLP, XGboost, LightGBM, and CatBoost) enhanced by BERTopic (natural language analysis tool). This multifaceted approach ensures both comprehensive data quality evaluation and in-depth structural analysis of documents. Furthermore, a 6T-based classification method refines non-applicable data for year-on-year AI analysis, demonstrably improving accuracy as measured by accuracy metric. Utilizing AI's power, including GPT-4, this research unveils year-on-year trends in emerging keywords and employs them to generate detailed summaries, enabling efficient processing of large text datasets and offering an AI analysis system applicable to policy domains. Notably, this study not only advances methodologies aligned with AI Act standards but also lays the groundwork for responsible AI implementation through analysis of government research and development investments.

Fault detection in blade pitch systems of floating wind turbines utilizing transformer architecture

  • Seongpil Cho;Sang-Woo Kim;Hyo-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.121-131
    • /
    • 2024
  • This paper proposes a fault detection method for blade pitch systems of floating wind turbines using transformer-based deep-learning models. Transformers leverage self-attention mechanisms, efficiently process time-series data, and capture long-term dependencies more effectively than traditional recurrent neural networks (RNNs). The model was trained using normal operational data to detect anomalies through high reconstruction losses when encountering abnormal data. In this study, various fault conditions in a blade pitch system, including environmental load cases, were simulated using a detailed model of a spar-type floating wind turbine, the data collected from these simulations were used to train and test the transformer models. The model demonstrated superior fault-detection capabilities with high accuracy, precision, recall, and F1 scores. The results show that the proposed method successfully identifies faults and achieves high-performance metrics, outperforming existing traditional multi-layer perceptron (MLP) models and long short-term memory-autoencoder (LSTM-AE) models. This study highlights the potential of transformer models for real-time fault detection in wind turbines, contributing to more advanced condition-monitoring systems with minimal human intervention.

Nonlinear forced vibration of imperfect FG beams with hygro-thermal factor

  • Y.J. He;G.L She
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • This paper intends to analyze the nonlinear forced vibrations of functionally graded material (FGM) beams with initial geometrical defects in hygro-thermal ambiences. For this purpose, we assume that the correlation properties of the material alter along the thickness direction in succession and the surface of the beam is subjected to humid and thermal loads. Based on the Euler Bernoulli beam theory and geometrical non-linearity, we use the Hamiltonian principle to formulate a theoretical model with consideration of the hygrothermal effects. Galerkin's technique has been proposed for the control equations of discrete systems. The non-linear primary resonances are acquired by applying the modified Lindstedt-Poincare method (MLP). Verify the reliability of the data obtained through comparison with literature. The non-linear resonance response is reflected by amplitude-frequency response curves. The numerical results indicate that the resonances of FGM beams include three non-linear characteristics, namely hard springs, soft springs and soft-hard spring types. The response modalities of the structure may transform between those non-linear characteristics when material properties, spring coefficients, geometric defect values, temperature-humidity loads and even the external stimulus generate variations.

An Improved Machine Learning-Based Short Message Service Spam Detection System

  • Odukoya Oluwatoyin;Akinyemi Bodunde;Gooding Titus;Aderounmu Ganiyu
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.182-190
    • /
    • 2024
  • The use of Short Message Services (SMS) as a mechanism of communication has resulted to loss of sensitive information such as credit card details, medical information and bank account details (user name and password). Several Machine learning-based approaches have been proposed to address this problem, but they are still unable to detect modified SMS spam messages more accurately. Thus, in this research, a stack- ensemble of four machine learning algorithms consisting of Random Forest (RF), Logistic Regression (LR), Multilayer Perceptron (MLP), and Support Vector Machine (SVM), were employed to detect more accurately SMS spams. The simulation was carried out using Python Scikit- learn tools. The performance evaluation of the proposed model was carried out by benchmarking it with an existing model. The evaluation results showed that the proposed model has an increase of 3.03% of accuracy, 8.94% of Recall, 2.17% of F-measure; and a decrease of 4.55% of Precision over the existing model. In conclusion, the ensemble method performed better than any individual algorithms and can be adopted by the Network service providers for better Quality of Service.

Using multivariate regression and multilayer perceptron networks to predict soil shear strength parameters

  • Ahmed Cemiloglu
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.129-142
    • /
    • 2024
  • The most significant soil parameters that are utilized in geotechnical engineering projects' design and implementations are soil strength parameters including friction (ϕ), cohesion (c), and uniaxial compressive strength (UCS). Understanding soil shear strength parameters can be guaranteed the design success and stability of structures. In this regard, professionals always looking for ways to get more accurate estimations. The presented study attempted to investigate soil shear strength parameters by using multivariate regression and multilayer perceptron predictive models which were implemented on 100 specimens' data collected from the Tabriz region (NW of Iran). The uniaxial (UCS), liquid limit (LL), plasticity index (PI), density (γ), percentage of fine-grains (pass #200), and sand (pass #4) which are used as input parameters of analysis and shear strength parameters predictions. A confusion matrix was used to validate the testing and training data which is controlled by the coefficient of determination (R2), mean absolute (MAE), mean squared (MSE), and root mean square (RMSE) errors. The results of this study indicated that MLP is able to predict the soil shear strength parameters with an accuracy of about 93.00% and precision of about 93.5%. In the meantime, the estimated error rate is MAE = 2.0231, MSE = 2.0131, and RMSE = 2.2030. Additionally, R2 is evaluated for predicted and measured values correlation for friction angle, cohesion, and UCS are 0.914, 0.975, and 0.964 in the training dataset which is considerable.

Prediction Model for Solar Power Generation Using Measured Data (측정 데이터를 이용한 태양광 발전량 예측 모델)

  • Yeongseo Park;Sangmin kang;Juseok Moon;Seongjun Cho;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.102-107
    • /
    • 2024
  • Previous research on solar power generation forecasting has generally relied on meteorological data, leading to lower prediction accuracy. This study, in contrast, uses actual measured power generation data to train various ANN (Artificial Neural Network) models and compares their prediction performance. Additionally, it describes the characteristics and advantages of each ANN model. The paper defines the principles of solar power generation, the characteristics of solar panels, and the model equations, and it also explains the I-V characteristics of solar cells. The results include a comparison between calculated and actual measured power generation, along with an evaluation of the accuracy of power generation predictions using artificial intelligence. The findings confirm that the LSTM (Long Short-Term Memory) model performs better than the MLP (Multi- Layer Perceptron) model in handling time-series data.

  • PDF

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Effect of Hwao-tang on Superoxide Generation and Neutrophil Functions

  • Park Soo Young;Kim Han Geu;Lee Soo Kyung;Ahan Jong Chan;Chung Tae Wook;Moon Jin-Young;Park Sun Dong;Kim June Ki;Choi Dall Yeong;Kim Cherl Ho;Park Won Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.230-240
    • /
    • 2003
  • We investigated that Hwao-tang had various effects on stimulus-induced superoxide generation in human neutrophils. Hwao-tang significantly inhibited N-formyl-methionyl-leucyl-phenylalanine-induced superoxide generation in a concentration-dependent manner, but not that induced by arachidonic acid. Also, Hwao-tang significantly reduced mouse paw oedema induced by carrageenan. The results suggest that protein tyrosine kinase participates in fMLP-mediated superoxide generation by Hwao-tang-treated human neutrophils. Also, the results indicate that Hwao-tang exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and prostaglandin E2 production, which could be due to a decreased expression of iNOS and COX-2.

Prediction of Elementary Students' Computer Literacy Using Neural Networks (신경망을 이용한 초등학생 컴퓨터 활용 능력 예측)

  • Oh, Ji-Young;Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.3
    • /
    • pp.267-274
    • /
    • 2008
  • A neural network is a modeling technique useful for finding out hidden patterns from data through repetitive learning process and for predicting target values for new data. In this study, we built multilayer perceptron neural networks for prediction of the students' computer literacy based on their personal characteristics, home and social environment, and academic record of other subjects. Prediction performance of the network was compared with that of a widely used prediction method, the regression model. From our experiments, it was found that personal characteristic features best explained computer proficiency level of a student, whereas the features of home and social environment resulted in the worse prediction accuracy among all. Moreover, the developed neural network model produced far more accurate prediction than the regression model.

  • PDF

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.