• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.028 seconds

A Study on the Synthesis of HMM and GA-MLP for EMG Signal Recognition (근전도 신호인식을 위한 HMM과 GA-MLP의 합성에 관한 연구)

  • Shin, C.K.;Lee, D.H.;Lee, S.M.;Kwon, J.W.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we suggested the combination of HMM(Hidden Markov Model) and MLP (Multi-Layer Perceptron) with GA(genetic algorithm) for a recognition of EMG signals. To describe EMG signal's dynamic properties, HMM algorithm was adapted and due to its outstanding abilities in static signal classification MLP was connected as a real processor. We also used GA( Genetic Algorithm) for improving MLP's learning rate. Experimental results showed that the suggested classifier gave higher EMG signal recognition rates with faster learning time than other one.

  • PDF

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

Feature Selection Deep Learning Model considering Time Series Prediction (시계열 예측을 고려한 속성 선택 딥러닝 모델)

  • Park, Kwang Ho;Munkhdalai, Lkhagvadorj;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.509-512
    • /
    • 2021
  • 최근 다양한 시계열 데이터의 분석이 딥러닝 방법을 통하여 수행되고 있다. 주로 RNN과 LSTM을 이용하여 많은 시계열 예측이 이루어지고 있다. 하지만 이러한 예측모델을 생성하는데 가장 중요한 것은 어떠한 변수를 얼마나 사용하는지가 중요하다. 이에 대하여, 본 연구에서는 3개의 신경망을 적용하여, 속성을 선택하는 Selection MLP, 속성에 가중치를 부여하는 Extraction MLP 그리고 예측을 진행하는 Prediction MLP로 이루어진 MLP-SEL 구조를 제안한다. 비교를 위하여 다른 순환 신경망에 대하여 시계열 데이터에 대한 예측을 진행하였으며, 그 결과 우리가 제안한 MLP-SEL 모델의 시계열 예측이 좋은 성능을 보였다.

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Prediction of Groundwater Level in Jeju Island Using Deep Learning Algorithm MLP and LSTM (딥러닝 알고리즘 MLP 및 LSTM을 활용한 제주도 지하수위 예측)

  • Kang, Dayoung;Byun, Kyuhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.206-206
    • /
    • 2022
  • 제주도는 투수성이 좋은 대수층이 발달한 화산섬으로 지하수가 가장 중요한 수자원이다. 인위적 요인과 기후변화로 인해 제주도의 지하수위가 저하하는 추세를 보이고 있음에 따라 지하수의 적정 관리를 위해 지하수위의 정확하고 장기적인 예측이 매우 중요하다. 다양한 환경적인 요인이 지하수의 함양 및 수위에 영향을 미치는 것으로 알려져 있지만, 제주도의 특징적인 기상인자가 지하수 시스템에 어떻게 영향을 미치는지를 파악하기 위한 연구는 거의 진행되지 않았다. 지하수위측에 있어서 물리적 모델을 이용한 방안은 다양한 조건에 의해 변화하는 지하수위의 정확하고 빠른 예측에 한계가 있는 것으로 알려져 있다. 이에 본 연구에서는 제주도 애월읍과 남원읍에 위치한 지하수위 관측정의 일 수위자료와 강수량, 온도, 강설량, 풍속, VPD의 다양한 기상 자료를 대상으로 인공신경망 알고리즘인 다층 퍼셉트론(MLP)와 Long Short Term Memory(LSTM)에 기반한 표준지하수지수(SGI) 예측 모델을 개발하였다. MLP와 LSTM의 표준지하수지수(SGI) 예측결과가 상당히 유사한 것으로 나타났으며 MLP과 LSTM 예측모델의 결정계수(R2)는 애월읍의 경우 각각 0.98, 남원읍의 경우 각각 0.96으로 높은 값을 보였다. 본 연구에서 개발한 지하수위 예측모델을 통해 효율적인 운영과 정밀한 지하수위 예측이 가능해질 것이며 기후변화 대응을 위한 지속가능한 지하수자원 관리 방안 마련에 도움을 줄 것이라 판단된다.

  • PDF

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

An EMG Signals Classification using Hybrid HMM and MLP Classifier with Genetic Algorithms (유전 알고리즘이 결합된 MLP와 HMM 합성 분류기를 이용한 근전도 신호 인식 기법)

  • 정정수;권장우;류길수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.48-57
    • /
    • 2003
  • This paper describes an approach for classifying myoelectric patterns using a multilayer perceptrons (MLP's) with genetic algorithm and hidden Markov models (HMM's) hybrid classifier. Genetic Algorithms play a role of selecting Multilayer Perceptron's optimized initial connection weights by its typical global search. The dynamic aspects of EMG are important for tasks such as continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most neural approaches. It is known that the hidden Markov model (HMM) is suitable for modeling temporal patterns. In contrast, the multilayer feedforward networks are suitable for static patterns. And, a lot of investigators have shown that the HMM's to be an excellent tool for handling the dynamical problems. Considering these facts, we suggest the combination of ANN and HMM algorithms that might lead to further improved EMG recognition systems.

  • PDF

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

A Fast-Loaming Algorithm for MLP in Pattern Recognition (패턴인식의 MLP 고속학습 알고리즘)

  • Lee, Tae-Seung;Choi, Ho-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.344-355
    • /
    • 2002
  • Having a variety of good characteristics against other pattern recognition techniques, Multilayer Perceptron (MLP) has been used in wide applications. But, it is known that Error Backpropagation (EBP) algorithm which MLP uses in learning has a defect that requires relatively long leaning time. Because learning data in pattern recognition contain abundant redundancies, in order to increase learning speed it is very effective to use online-based teaming methods, which update parameters of MLP pattern by pattern. Typical online EBP algorithm applies fixed learning rate for each update of parameters. Though a large amount of speedup with online EBP can be obtained by choosing an appropriate fixed rate, fixing the rate leads to the problem that the algorithm cannot respond effectively to different leaning phases as the phases change and the learning pattern areas vary. To solve this problem, this paper defines learning as three phases and proposes a Instant Learning by Varying Rate and Skipping (ILVRS) method to reflect only necessary patterns when learning phases change. The basic concept of ILVRS is as follows. To discriminate and use necessary patterns which change as learning proceeds, (1) ILVRS uses a variable learning rate which is an error calculated from each pattern and is suppressed within a proper range, and (2) ILVRS bypasses unnecessary patterns in loaming phases. In this paper, an experimentation is conducted for speaker verification as an application of pattern recognition, and the results are presented to verify the performance of ILVRS.