• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.025 seconds

Text Cues-based Image Matching Method for Navigation (네비게이션을 위한 문자영상기반의 영상매칭 방법)

  • Park, An-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.631-633
    • /
    • 2005
  • 유비쿼터스 시대가 다가오면서, 많은 사람들은 모르는 장소에서 자신의 위치와 목적지까지의 경로에 대한 정보를 알고 싶어할 것이다. 기존의 네비게이션(navigation)을 위한 비전기술은 고차원과 저차원 특징값을 이용하였다. 텍스춰 정보, 색상 히스토그램과 같은 저차원 특징값은 영상의 특징을 정확하게 표현하기 어려우며, 마커와 같은 고차원 정보는 실험환경을 구축하는데 어려움이 있다. 우리는 기존 저/고차원의 특징값 대신, 영상의 특징을 표현하고 인덱싱(indexing)하기 위한 유용한 정보를 많이 포함하고 있으며, 실제환경에서 널리 분포되어있는 중차원 특징값인 문자영상을 이용한다. 문자영상추출은 MLP(Multi-layer perceptron)와 CAMShift알고리즘을 결합한 방법을 이용하며, 서로 다른 장소지만 같은 문자를 가진 곳에서 인식을 수행하기 위해 문자영상의 크기와 기울기를 기반으로 한 영상 검색공간을 대상으로 영상매칭을 수행한다. 실험에서 문자영상을 포함하는 직사각형 검색공간으로 인해 다양한 크기와 기울기에서 높은 인식률을 보이며, 간단한 계산으로 빠른 수행시간을 가진다.

  • PDF

A Personaliz Customer Retention Procedure For Internet Game Site Based on the Self-Organizing Map and Association Rule Mining.

  • Song Hee Seok;Kim Jae Kyeong;Kim Soung Hie;Chae Kyung Hee
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.306-311
    • /
    • 2002
  • This paper propose a personalized defection detection and prevention procedure based on the observation that potential defectors have tendency to take a couple of months or weeks. For this purpose, possible states of customer behavior are determined from past behavior data using SOM (Self-Organizing Map). For the evaluation of the proposed procedure, a case study has been conducted for a Korean online game site. The result demonstestes that the proposed procedure can assist defection prevention effectively and detect potential defectors without deterioration of prediction accuracy comparison to prediction by MLP. Our procedure can be applied to various service industries that can capture fluent customer behavior data such as telecommunications, internet access services, and content services, too.

  • PDF

Neural Network Based Recognition of Machine Printed Hangul Characters of Low Quality

  • Lim, Kil-Taek;Kim, Ho-Yon;Nam, Yun-Seok;Kim, Hye-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1772-1775
    • /
    • 2002
  • In this paper, we propose a Hangul character recognition method in which new letter components as recognition units are introduced and the MLP (multilayer perceptrons) neural networks are employed for two-step recognition of Hangul. To recognize Hangul character, we divide it into two or three recognition units and extract the direction angle features of them to be fed to the corresponding neural network recognizers. The recognition results of neural network recognizers are combined by another neural network. The experiments were conducted on the Hangul characters from real letter envelopes which are collected in the mail centers in Korea and the results showed that our method performs better than the conventional one.

  • PDF

Rolling Force Prediction in Cold rolling Mill using Neural Networks (신경망을 이용한 냉연 압하력 예측)

  • Cho, Yong-Jung;Cho, Sung-Zoon
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.298-305
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. Most of rolling processes use mathematical models to predict rolling force which is very important to decide the resultant thickness of a coil. In general, these mathematical models are not flexible for variant coil types and cannot handle various elements which is practically important to decide accurate rolling force. A corrective neural network is proposed to improve the accuracy of rolling force prediction. Additional variables-composition of the coil, coiling temperature and working roll parameters-are fed to the network. The model uses an MLP with BP to predict a corrective coefficient. The test results using 1,586 process data collected at POSCO in early 1995 show that the proposed model reduced the prediction error by 30% on average.

  • PDF

Features Extraction Method of Segmented pixels for Handwritten Numeral Recognition (필기체 숫자인식을 위한 분절된 화소들의 특징추출 방법)

  • Choi, Yong-Ho;Cho, Beom-Joon
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.557-560
    • /
    • 2002
  • 본 논문에서 제안하는 분절된 화소들의 특징추출 방법은 이진화 영상에서 수직/수평 화소들의 분절점을 탐색하여 추출하는 특징 탐색기이다. 숫자의 구조적인 면을 고려하여 사소한 부분들도 명확한 특징으로 탐지하여 추출하였고, 이러한 방법은 일반적으로 사용하여지는 특징추출 방법 몇가지를 선택하여 이용하였고, 제안하는 방법과 결합하여 필기체 숫자를 인식하였다. 인식기를 구현하기 위하여 3 개층 구조를 갖는 클러스터 MLP 신경망을 사용하였다. 실험 결과 단순히 일반적인 특징만을 활용하여 얻는 인식률 보다 훨씬 향상됨을 보여주었다.

  • PDF

Driver drowsiness recognition system based on camera image analysis (카메라 영상 분석 기반 운전자 졸음 인식 시스템)

  • Kim, Hyun-Suk;Choi, Min-Su;Bae, You-Suk
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.719-722
    • /
    • 2016
  • 운전자의 주의력 감쇠는 교통사고 요인에 있어서 큰 비중을 차지한다. 주의력 감쇠는 무선 통화, 기기 조작, 졸음으로 나타날 수 있는데 자동차 대형사고의 대부분은 졸음운전으로 인하여 일어나며, 졸음운전 시에는 운전자의 운전조작 및 방어 조작 능력이 현저하게 저하한다. 본 시스템은 카메라로부터 실시간으로 영상 데이터를 입력 받아 처리하여 운전자의 졸음 상태를 인식하는 시스템으로 운전자에게 졸음방지 기능을 제공한다. Haar-Like Feature cascade classifier 방법을 사용하여 얼굴 및 눈 영역 검출을 하였고 Open Eye, Closed Eye가 학습된 MLP(Multi-Layer Perceptron)를 이용해 눈 깜박임을 인식하여 PERCLOS(Percentage of Eye Close)방법으로 졸음을 판단하였다. 본 논문에서 제안한 방법의 인식률의 정확도를 검증하기 위해 인식률 테스트를 하였다.

Automatic Classification of Power Quality Disturbances Using Efficient Feature Vector Extraction and Neural Networks (효율적 특징벡터 추출기법와 신경회로망을 이용한 전력외란 자동 식별)

  • Ban, Ji-Hoon;Kim, Hyun-Soo;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1030-1032
    • /
    • 1998
  • In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.

  • PDF

Visual inspection algorithm of cold rolled strips by wavelet frame transform (Wavelet frame 변환을 이용한 냉연 시각검사 알고리듬)

  • Lee, Chang-Su;Choi, Jong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-377
    • /
    • 1998
  • This paper deals with the detection, feature extraction and classification of surface defects in cold rolled strips. Inspection systems are one of the most important fields in factory automation. Defects such as slipmark and dullmark can be effectively detected with a Gaussian matched filter because their shapes are similar to Gaussian. It is justified that the proposed WF(Wavelet Frame) method could be regarded as multiscale Gaussian matched filter which can be applied to the inspection of cold rolled strip. After a wavelet frame transform, the entropies and moments are computed for each subband which pass through both local low pass filter and nonlinear operator. With these features as input, a MLP(Multi Layer Perceptron) is used as a classifier. The proposed inspection method was applied to the real images with defects, and hence showed good performance. The role of each extracted feature is analyzed by KLT(Karhunen-Loeve Transform).

  • PDF

PCA vs. ICA for Face Recognition

  • Lee, Oyoung;Park, Hyeyoung;Park, Seung-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.873-876
    • /
    • 2000
  • The information-theoretic approach to face recognition is based on the compact coding where face images are decomposed into a small set of basis images. Most popular method for the compact coding may be the principal component analysis (PCA) which eigenface methods are based on. PCA based methods exploit only second-order statistical structure of the data, so higher- order statistical dependencies among pixels are not considered. Independent component analysis (ICA) is a signal processing technique whose goal is to express a set of random variables as linear combinations of statistically independent component variables. ICA exploits high-order statistical structure of the data that contains important information. In this paper we employ the ICA for the efficient feature extraction from face images and show that ICA outperforms the PCA in the task of face recognition. Experimental results using a simple nearest classifier and multi layer perceptron (MLP) are presented to illustrate the performance of the proposed method.

  • PDF

A Simple Approach of Improving Back-Propagation Algorithm

  • Zhu, H.;Eguchi, K.;Tabata, T.;Sun, N.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1041-1044
    • /
    • 2000
  • The enhancement to the back-propagation algorithm presented in this paper has resulted from the need to extract sparsely connected networks from networks employing product terms. The enhancement works in conjunction with the back-propagation weight update process, so that the actions of weight zeroing and weight stimulation enhance each other. It is shown that the error measure, can also be interpreted as rate of weight change (as opposed to ${\Delta}W_{ij}$), and consequently used to determine when weights have reached a stable state. Weights judged to be stable are then compared to a zero weight threshold. Should they fall below this threshold, then the weight in question is zeroed. Simulation of such a system is shown to return improved learning rates and reduce network connection requirements, with respect to the optimal network solution, trained using the normal back-propagation algorithm for Multi-Layer Perceptron (MLP), Higher Order Neural Network (HONN) and Sigma-Pi networks.

  • PDF