• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.03 seconds

The Comparison of Speaker Adaptation Methods (화자 적응 방법들의 비교)

  • 황영수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 1999
  • In this paper, we proposed various speaker adaptation methods and studied the performance of these methods. Methods which were studied in this paper are MAPE(Maximum A Posteriori Probability Estimation), Linear Spectral Estimating, Multi-Layer Perceptron and ARTMAP. In order to evaluate the performance of these methods, we used Korean isolated digits as the experimental data, the hybrid speaker adaptation method, which unified MAPE, linear spectral estimating and output probability of SCHMM, showed the better recognition result than those which performed other methods. And the method using ARTMAP showed the similar result to above hybrid method.

  • PDF

A Study on the Speaker Recognition using the Hybrid System (하이브리드 시스템을 이용한 화자인식에 관한 연구)

  • 강현규
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.119-122
    • /
    • 1998
  • 본 논문은 MLP, HMM, DTW가 결합된 하이브리드 시스템을 기반으로한 화자인식시스템에 대한 연구이다. 이미 시스템에 등록되어 있는 화자의 인식과 비등록 화자의 등록된 화자 키워드 도용에 대한 시스템 거부, 그리고 등록된 화자의 다른 등록 화자에 대한 키워드 도용에 따른 시스템 거부에 관하여 검토하였다. 키워드는 화자의 이름을 사용하였고, 시스템에 사용된 특징 파라메터는 15차 켑스트럼, 10차 LSF, 10개 대역으로 나뉘어진 주파수 대역별 에너지값(10차 FB)을 사용하였다. 이 세 가지의 특징 파라메터들과 세 개의 인식기를 조합, 모두 아홉 개의 인식 결과값을 누적하여 인식 여부를 결정하도록 하였다. 개별적 시스템에서 발생되는 오인식을 Hybrid model을 이용하여 처리한 본 시스템에서는 실험대상 화자에 대하여 100%의 시스템 신뢰도를 얻었다.

  • PDF

Data analysis for detection of unauthorized AP using machine learning algorithm in the process of cyber war damage assessment (사이버전 피해평가 과정에서 비인가 무선 AP 공격 식별을 위한 기계학습을 이용한 데이타 분석)

  • Kim, Doyeon;Kim, Yonghyun;Kim, Donghwa;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.232-234
    • /
    • 2017
  • 사이버전 피해평가에 있어서 유무선 통합 환경에 대한 공격의 탐지와 이에 대한 평가가 필요한 상황이다. 특히 회사, 정부 및 군 시설 등에서 인가되지 않은 AP를 사용하여 공격이 발생하는 경우 각종 바이러스 및 해킹 공격에 의한 피해가 발생한 가능성이 높다. 띠라서 인가된 AP와 인가되지 않은 AP를 탐지해서 찾아 내야한다. 본 논문에서는 인가된 AP와 인가 되지 않은 AP를 탐지하기 위해 RTT(Round Trip Time)값을 데이터셋으로 만들고 각 기계학습 알고리즘 SVM(Support Vector Machine), J48(C4.5), KNN(K nearest neighbors), MLP(Multilayer Perceptron)의 결과를 비교해 성능의 차이를 밝히고 이를 통하여 공격을 탐지하여 피해평가에 연결이 되도록 한다.

A credit prediction model of a capital company′s customers using genetic algorithm based integration of multiple classifiers (유전자 알고리즘기반 복수 분류모형 통합에 의한 할부금융고객의 신용예측모형)

  • 이웅규;김홍철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • 본 연구에서는 할부금융시장에서의 고객신용예측을 위한 모형으로 여러 가지 인공신경망(Neural Network) 모형들을 유전자 알고리즘(Genetic Algorithm)을 이용하여 통합한 신용예측모형을 제안한다. 10개의 학습된 인공신경망 모형들을 유전자알고리즘을 이용하여 종류별로 통합하여 MLP(Multi-Layered Perceptrons), Linear, RBF(Radial Basis Function) 세 가지의 대표모델을 얻고 이를 다시 하나의 인공신경망 모델로 통합하였다. 이를 통합되기 이전의 각각의 인공신경망 모형들과 성능을 비교, 분석하여 본 연구에서 제안한 통합모형의 유효성과 통합방법의 타당성을 제시하였다.

  • PDF

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Development of the ANN for the Estimation of Earth Parameter and Equivalent Resistivity

  • Ji Pyeong-Shik;Lee Jong-Pil;Shin Kwan-Woo;Lim Jae-Yoon;Kim Sung-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.350-356
    • /
    • 2005
  • Earth equipments are essential to protect humans and other types of equipment from abnormal conditions. Earth resistance and potential must be restricted within a low value. An estimation algorithm of earth parameters and equivalent resistivity is introduced to calculate reliable earth resistance in this research. The proposed algorithm is based on the relationship between apparent resistances and earth parameters. The proposed algorithm, which approximates the non-linear characteristics of earth by using the Artificial Neural Network (ANN), estimates the earth parameters and equivalent resistivity. The effectiveness of the proposed method is verified with case studies.

근전도신호를 이용한 노약자/장애인용 재활 보조시스템의 인터페이스기법

  • 장영건;신철규;이은실;권장우;홍승홍
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.107-113
    • /
    • 1997
  • In this paper, an interfacing method to control rehabilitation assitance system with bio-signal is proposed. Controlling with EMG signals method has certain advantage on signal-collecting, but has some drawbacks in the function resolution of EMG signals because data-processing process is not efficient. To improve function-resolution and to increase the efficiency of EMG signal interfacing with rehabilitation assistance system, Multi-layer Perception which is highly effective with static signal and hidden-Markov model for dynamic signal resolving are fused together. In proposed method. The direction and average speed of the rehabilitation assitance system are controlled by the trajectory control and estimation of the moving direction result from the fused model. From the experiment, proposed GMM and 2-level MLP hybrid-classifier yielded 8.6% perception-error rate, improving function resolution. New acceleration control method constructed with 3 nested linear filter produced continuous acceleration paths without the information of destination point. Thus, the mass output caused by non- continuous acceleration-deceleration was eliminated. In the simulation, the necessary calculation, in the case of multiplication, was reduced by 11.54%.

  • PDF

Malay Syllables Speech Recognition Using Hybrid Neural Network

  • Ahmad, Abdul Manan;Eng, Goh Kia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.287-289
    • /
    • 2005
  • This paper presents a hybrid neural network system which used a Self-Organizing Map and Multilayer Perceptron for the problem of Malay syllables speech recognition. The novel idea in this system is the usage of a two-dimension Self-organizing feature map as a sequential mapping function which transform the phonetic similarities or acoustic vector sequences of the speech frame into trajectories in a square matrix where elements take on binary values. This property simplifies the classification task. An MLP is then used to classify the trajectories that each syllable in the vocabulary corresponds to. The system performance was evaluated for recognition of 15 Malay common syllables. The overall performance of the recognizer showed to be 91.8%.

  • PDF

Improving the Error Back-Propagation Algorithm of Multi-Layer Perceptrons with a Modified Error Function (역전파 학습의 오차함수 개선에 의한 다층퍼셉트론의 학습성능 향상)

  • 오상훈;이영직
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.922-931
    • /
    • 1995
  • In this paper, we propose a modified error function to improve the EBP(Error Back-Propagation) algorithm of Multi-Layer Perceptrons. Using the modified error function, the output node of MLP generates a strong error signal in the case that the output node is far from the desired value, and generates a weak error signal in the opposite case. This accelerates the learning speed of EBP algorothm in the initial stage and prevents overspecialization for training patterns in the final stage. The effectiveness of our modification is verified through the simulation of handwritten digit recognition.

  • PDF

Printer calibration for linearly perceived tone reproduction (인간 시각에 선형적인 계조 재현을 위한 프린터 보정)

  • 이철희;이채수;강봉수;이응주;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.4
    • /
    • pp.55-69
    • /
    • 1999
  • 일반적으로 잉크젯 프린터는 농도에 대해 선형적인 계조재현 특성을 나타낸다. 그러나 인간 시각의 경우 농도에 선형적인 프린터 출력에 대하여 비선형적인 지각반응을 나타낸다. 즉 농도가 큰 패치(patch)에 대해서는 명도나 색차에 대한 변별력이 작으며 농도가 작은 패치에 대해서는 좀 더 예민한 변별력을 갖는다. 따라서 농도에 선형적인 프린터 출력은 시각적인 활성영역을 줄이므로 프린터에서 구별되는 계조의 범위가 좁아진다. 그러므로 본 논문에서는 인간의 시지각 특성과 매우 상관도가 높은 CIELAB 색공간을 이용하여 균등한 명도 변화 및 색차를 나타내도록 하는 프린터 계조재현 알고리즘을 제안한다. 이때 시각적으로 균등한 변화를 나타내는 프린터의 입력값을 찾기 위해 다층 퍼셉트론 신경망(multi-layer perceptron neural network, MLP)을 이용하였다. 신경망의 학습을 위해 계조에 따른 패치를 만들고, 프린터 구동입력신호 및 패치의 측정된 값으로 신경망을 학습하였다. 학습된 신경망으로 선형적인 출력을 내는 프린터 구동신호를 찾고 LUT(look-up table)를 이용하여 프린터 입력 신호를 역으로 보정하였다. 결과, 보정된 프린터의 출력이 선형적인 계조 변화를 보였고 변화가 인지되는 계조의 범위가 늘어났으며 실형상에 대한 실험에 있어서도 우수한 화질을 보였다.

  • PDF