• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.024 seconds

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Blood glucose prediction using PPG and DNN in dogs - a pilot study (개의 PPG와 DNN를 이용한 혈당 예측 - 선행연구)

  • Cheol-Gu Park;Sang-Ki Choi
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • This paper is a study to develop a deep neural network (DNN) blood glucose prediction model based on heart rate (HR) and heart rate variability (HRV) data measured by PPG-based sensors. MLP deep learning consists of an input layer, a hidden layer, and an output layer with 11 independent variables. The learning results of the blood glucose prediction model are MAE=0.3781, MSE=0.8518, and RMSE=0.9229, and the coefficient of determination (R2) is 0.9994. The study was able to verify the feasibility of glycemic control using non-blood vital signs using PPG-based digital devices. In conclusion, a standardized method of acquiring and interpreting PPG-based vital signs, a large data set for deep learning, and a study to demonstrate the accuracy of the method may provide convenience and an alternative method for blood glucose management in dogs.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine (자동 분할과 ELM을 이용한 심장질환 분류 성능 개선)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.32-43
    • /
    • 2009
  • In this paper, we improve the performance of cardiac disorder classification by continuous heart sound signals using automatic segmentation and extreme learning machine (ELM). The accuracy of the conventional cardiac disorder classification systems degrades because murmurs and click sounds contained in the abnormal heart sound signals cause incorrect or missing starting points of the first (S1) and the second heart pulses (S2) in the automatic segmentation stage, In order to reduce the performance degradation due to segmentation errors, we find the positions of the S1 and S2 pulses, modify them using the time difference of S1 or S2, and extract a single period of heart sound signals. We then obtain a feature vector consisting of the mel-scaled filter bank energy coefficients and the envelope of uniform-sized sub-segments from the single-period heart sound signals. To classify the heart disorders, we use ELM with a single hidden layer. In cardiac disorder classification experiments with 9 cardiac disorder categories, the proposed method shows the classification accuracy of 81.6% and achieves the highest classification accuracy among ELM, multi-layer perceptron (MLP), support vector machine (SVM), and hidden Markov model (HMM).

Enhanced Machine Learning Preprocessing Techniques for Optimization of Semiconductor Process Data in Smart Factories (스마트 팩토리 반도체 공정 데이터 최적화를 위한 향상된 머신러닝 전처리 방법 연구)

  • Seung-Gyu Choi;Seung-Jae Lee;Choon-Sung Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • The introduction of Smart Factories has transformed manufacturing towards more objective and efficient line management. However, most companies are not effectively utilizing the vast amount of sensor data collected every second. This study aims to use this data to predict product quality and manage production processes efficiently. Due to security issues, specific sensor data could not be verified, so semiconductor process-related training data from the "SAMSUNG SDS Brightics AI" site was used. Data preprocessing, including removing missing values, outliers, scaling, and feature elimination, was crucial for optimal sensor data. Oversampling was used to balance the imbalanced training dataset. The SVM (rbf) model achieved high performance (Accuracy: 97.07%, GM: 96.61%), surpassing the MLP model implemented by "SAMSUNG SDS Brightics AI". This research can be applied to various topics, such as predicting component lifecycles and process conditions.

Foreign Accents Classification of English and Urdu Languages, Design of Related Voice Data Base and A Proposed MLP based Speaker Verification System

  • Muhammad Ismail;Shahzad Ahmed Memon;Lachhman Das Dhomeja;Shahid Munir Shah
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.43-52
    • /
    • 2024
  • A medium scale Urdu speakers' and English speakers' database with multiple accents and dialects has been developed to use in Urdu Speaker Verification Systems, English Speaker Verification Systems, accents and dialect verification systems. Urdu is the national language of Pakistan and English is the official language. Majority of the people are non-native Urdu speakers and non-native English in all regions of Pakistan in general and Gilgit-Baltistan region in particular. In order to design Urdu and English speaker verification systems for security applications in general and telephone banking in particular, two databases has been designed one for foreign accent of Urdu and another for foreign accent of English language. For the design of databases, voice data is collected from 180 speakers from GB region of Pakistan who could speak Urdu as well as English. The speakers include both genders (males and females) with different age groups ranging from 18 to 69 years. Finally, using a subset of the data, Multilayer Perceptron based speaker verification system has been designed. The designed system achieved overall accuracy rate of 83.4091% for English dataset and 80.0454% for Urdu dataset. It shows slight differences (4.0% with English and 7.4% with Urdu) in recognition accuracy if compared with the recently proposed multilayer perceptron (MLP) based SIS achieved 87.5% recognition accuracy

Adherence-induced gene expression in human alveolar macrophages (표면부착에 의한 사람 폐포대식세포의 유전자 발현에 관한 연구)

  • Chung, Man Pyo;Yoo, Chul Gyu;Han, Sung Koo;Shim, Young-Soo;Rhee, Chong H.;Han, Yang Chol;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.936-944
    • /
    • 1996
  • Background: Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. Adhesion molecules and gene transcription of the inflammatory mediators are known to be associated in this process. To evaluate whether adhesion molecule and transcriptional activation of the inflammatory substances are also involved in the activation of human alveolar macrophage by the adherence procedure, we designed this experiment. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be nonnal by chest cr and alveolar macrophage was harvested. To measure the expression of Interleukin-8(IL-8) mRNA, manganese superoxide dismutase(SOD) mRNA and CD11/CD18 mRNA in human alveolar macrophage of both adherence state and suspension state, Northern blot analysis was done at 0, 2, 4, 8 and 24hrs after the adherence to plastic surface and during suspension state. Then, phorbol myristate acetate(pMA) and N-formyl-methionyl-leucyl-phenylalanine(fMLP) were added respectively in the same experimental condition. Result : 1) Human alveolar macrophages in the adherent state induced IL-8 mRNA and SOD mRNA expression which was maximal at 8 hours after the adherence to plastic surface. But we could not observe the upregulation of CD18 mRNA by surface adherence. 2) PMA induced these mRNA expression both in the adherent cell and the nonadherem cells, but the induction of mRNA expression by fMLP occurred only in the adherent cells. Conclusion: These results suggest that adherence of huamn alveolar macropahge is an important cell-activating event that may play a critical role in the modulation of lung inflammatory respones.

  • PDF

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Emotion Recognition Method based on Feature and Decision Fusion using Speech Signal and Facial Image (음성 신호와 얼굴 영상을 이용한 특징 및 결정 융합 기반 감정 인식 방법)

  • Joo, Jong-Tae;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.11-14
    • /
    • 2007
  • 인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.

  • PDF