• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.029 seconds

S-PRESENT Cryptanalysis through Know-Plaintext Attack Based on Deep Learning (딥러닝 기반의 알려진 평문 공격을 통한 S-PRESENT 분석)

  • Se-jin Lim;Hyun-Ji Kim;Kyung-Bae Jang;Yea-jun Kang;Won-Woong Kim;Yu-Jin Yang;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.193-200
    • /
    • 2023
  • Cryptanalysis can be performed by various techniques such as known plaintext attack, differential attack, side-channel analysis, and the like. Recently, many studies have been conducted on cryptanalysis using deep learning. A known-plaintext attack is a technique that uses a known plaintext and ciphertext pair to find a key. In this paper, we use deep learning technology to perform a known-plaintext attack against S-PRESENT, a reduced version of the lightweight block cipher PRESENT. This paper is significant in that it is the first known-plaintext attack based on deep learning performed on a reduced lightweight block cipher. For cryptanalysis, MLP (Multi-Layer Perceptron) and 1D and 2D CNN(Convolutional Neural Network) models are used and optimized, and the performance of the three models is compared. It showed the highest performance in 2D convolutional neural networks, but it was possible to attack only up to some key spaces. From this, it can be seen that the known-plaintext attack through the MLP model and the convolutional neural network is limited in attackable key bits.

Development of an Angle Estimation System Using a Soft Textile Bending Angle Sensor (소프트 텍스타일 굽힘 각 센서를 이용한 각도 추정 시스템 개발 )

  • Seung-Ah Yang;Sang-Un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • This study aimed to develop a soft fabric-based elbow-bending angle sensor that can replace conventional hard-type inertial sensors and a system for estimating bending angles using it. To enhance comfort during exercise, this study treated four fabrics (Bergamo, E-band, span cushion, and polyester) by single-walled carbon nanotube dip coating to create conductive textiles. Subsequently, one fabric was selected based on performance evaluations, and an elbow flexion angle sensor was fabricated. Gauge factor, hysteresis, and sensing range were employed as performance evaluation metrics. The data obtained using the fabricated sensor showed different trends in sensor values for the changes in the angle during bending and extending movements. Because of this divergence, the two movements were separated, and this constituted the one-step process. In the two-step process, multilayer perceptron (MLP) was employed to handle the complex nonlinear relationships and achieve high data accuracy. Based on the results of this study, we anticipate effective utilization in various smart wearable and healthcare domains. Consequently, a soft- fabric bending angle sensor was developed, and using MLP, nonlinear relationships can be addressed, enabling angle estimation. Based on the results of this study, we anticipate the effective utilization of the developed system in smart wearables and healthcare.

The Genetic Organization of the Linear Mitochondrial Plasmid mlp1 from Pleurotus ostreatus NFFA2

  • Kim, Eun-Kyoung;Youn, Hye-Sook;Koo, Yong-Bom;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.264-270
    • /
    • 1997
  • The structure of plasmid mlp1, a linear 10.2kb mitochondrial plasmid of Pleurotus ostreatus NFF A2 was determined by restriction enzyme mapping and partial sequencing. The plasmid encodes at least two proteins; a putative RNA polymerase showing homology to yeast mitochondrial RNA polymerase and to viral-encoded RNA polymerases, and a putative DNA polymerase showing significant homology to the family B thpe DNA polymerases. It also contains terminal inverted repeat sequences at both ends which are longer than 274 bp. A 1.6 kb EcoRI restriction fragment of m1p1 containing the putative RNA polymerase gene did not hybridize to the nuclear or motochondrial genomes from P. ostreatus, suggesting that it may encode plasmidspecific RNA polymerase. The gene fragment also did not hybridize with the RNA polymerase gene (RPO41) from Saccaromyces cerevisiae. The relationship between genes in m1p1 and those in another linear plasmid pC1K1 of Claviceps purpurea was examined by DNA hybridization. The result indicates that the genes for DNA and RNA polymerases are not closely related with those in C. purpurea.

  • PDF

Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks

  • Mazloom, Moosa;Yoosefi, M.M.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.285-301
    • /
    • 2013
  • This paper concentrates on the results of experimental work on tensile strength of self-compacting concrete (SCC) caused by flexure, which is called rupture modulus. The work focused on concrete mixes having water/binder ratios of 0.35 and 0.45, which contained constant total binder contents of 500 $kg/m^3$ and 400 $kg/m^3$, respectively. The concrete mixes had four different dosages of a superplasticizer based on polycarboxylic with and without silica fume. The percentage of silica fume that replaced cement in this research was 10%. Based upon the experimental results, the existing equations for anticipating the rupture modulus of SCC according to its compressive strength were not exact enough. Therefore, it is decided to use artificial neural networks (ANN) for anticipating the rupture modulus of SCC from its compressive strength and workability. The conclusion was that the multi layer perceptron (MLP) networks could predict the tensile strength in all conditions, but radial basis (RB) networks were not exact enough in some circumstances. On the other hand, RB networks were more users friendly and they converged to the final networks quicker.

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

A Design of Block Cryptosystem using Multiple Nonlinear S-box Function (다중 비선형 S-box 함수를 이용한 블록 암호시스템 설계)

  • 정우열;이선근
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.90-96
    • /
    • 2001
  • The development of network and the other communication-network can generate serious social problems. So. it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security part such as hacking. cracking. In this paper. the proposed multiple nonlinear S-box function which is capable to cipher regardless of key distribution or key-length for these definite problem is proposed and designed in hardware. The proposed multiple nonlinear S-box function increase secret level from using a nonlinear function in multiply for key data utilized in cryptography that generates MDP and MLP in maximum is proposed to prevent cryptography analysis. The designed the multiple nonlinear S-box function in this paper performed synthesization and simulation using Synopsys Ver. 1999.10 and VHDL

Image Sequence Compression based on Adaptive Classification of Interframe Difference Image Blocks (프레임간 차영상 블록의 적응분류에 의한 영상시퀀스 압축)

  • Ahn, Chul-Joon;Kong, Seong-Gon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.122-128
    • /
    • 1998
  • This paper presents compression of image sequences based on the classification of interframe difference image blocks. classification process consists of image activity classification and energy distribution classification. In the activity classification, interframe difference image blocks are classified into activity blocks and non-activity blocks using the edge detection. In the distribution classification, activity blocks are further classified into vertical blocks, horizontal blocks, and small activity blocks using the AC energy distribution features. The RBFN, trained with numerical classification results, successfully classifies difference image blocks according to image details. Image sequence compressing based on the classification of interframe difference image blocks using the RBFN shows better compression results and less training time than the classical sorting method and the MLP network.

  • PDF

Downscaling Technique of the Monthly Precipitation Data using Support Vector Machine (지지벡터기구를 이용한 월 강우량자료의 Downscaling 기법)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kwon, Hyun-Han;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.112-115
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as support vector machine neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the monthly precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 2 grid points including $127.5^{\circ}E/35^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, which produced the best results from the previous study. The output node of neural networks models consist of the monthly precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of SVM-NNM and MLP-NNM performances for the downscaling of the monthly precipitation data. We should, therefore, construct the credible monthly precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

Application of the Neural Networks Models for the Daily Precipitation Downscaling (일 강우량 Downscaling을 위한 신경망모형의 적용)

  • Kim, Seong-Won;Kyoung, Min-Soo;Kim, Byung-Sik;Kim, Hyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.125-128
    • /
    • 2009
  • The research of climate change impact in hydrometeorology often relies on climate change information. In this paper, neural networks models such as generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM) are proposed statistical downscaling of the daily precipitation. The input nodes of neural networks models consist of the atmospheric meteorology and the atmospheric pressure data for 4 grid points including $127.5^{\circ}E/37.5^{\circ}N$, $127.5^{\circ}E/35^{\circ}N$, $125^{\circ}E/37.5^{\circ}N$ and $125^{\circ}E/35^{\circ}N$, respectively. The output node of neural networks models consist of the daily precipitation data for Seoul station. For the performances of the neural networks models, they are composed of training and test performances, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM performances for the downscaling of the daily precipitation data. We should, therefore, construct the credible daily precipitation data for Seoul station using statistical downscaling method. The proposed methods can be applied to future climate prediction/projection using the various climate change scenarios such as GCMs and RCMs.

  • PDF

A Study on the Socio-Technical Transition in Electric Lighting : from Incandescent Lamp to Fluorescent Lamp (전기조명의 사회기술전환 연구 : 백열램프에서 형광램프로)

  • Kim, Jaeil;Lee, Heesang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.8-21
    • /
    • 2015
  • Technology for electric lighting has been evolving from Incandescent Lamp(IL) through Fluorescent Lamp(FL) and currently to Solid State Lighting(SSL) such as LED for more than 130 years of time. However, it took more than 100 years until the transition from IL to FL across overall society. That is because the transition is the Socio-Technical Transition(STT) which involves various social elements. This study investigated and analyzed the theories regarding STT, and applied the Multi-Level Perspective(MLP) theory to the case of electric lighting. A qualitative contents analysis was used with secondary data as research method, and the analyzed result was visualized based on the frame of MLP theory. The STT of electric lighting from IL to FL took place as the order of Technical Niche, Socio-Technical Regime and Landscape. Specifically, in Technical Niche level: Establishing Market Niche, Price-Performance Improvement, Learning Process and Support of Powerful Group took place. In Socio-Technical Regime level: Changes in Social Network, Changes in Technology and Changes in Rules. In Landscape level: Macro-Political Development, Socio-Economic Trends and Macro-Economic Trends took place in consecutive order.