• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.043 seconds

Prediction of Cutting Force using Neural Network and Design of Experiments (신경망과 실험계획법을 이용한 절삭력 예측)

  • 이영문;최봉환;송태성;김선일;이동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1032-1035
    • /
    • 1997
  • The purpose of this paper is to reduce the number of cutting tests and to predict the main cutting force and the specific cutting energy. By using the SOFM neural network, the most suitable cutting test conditions has been found. As a result, the number of cutting tests has been reduced to one-third. And by using MLP neural network and regression analysis, the main cutting force and specific cutting energy has been predicted. Predicted values of main cutting force and specific cutting energy are well concide with the measured ones.

  • PDF

Single-Layer Neural Networks with Double Rejection Mechanisms for Character Recognition (단층 신경망과 이중 기각 방법을 이용한 문자인식)

  • 임준호;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.522-532
    • /
    • 1995
  • Multilayer neural networks with backpropagation learning algorithm are widely used for pattern classification problems. For many real applications, it is more important to reduce the misclassification rate than to increase the rate of successful classification. But multilayer perceptrons(MLP's) have drawbacks of slow learning speed and false convergence to local minima. In this paper, we propose a new method for character recognition problems with a single-layer network and double rejection mechanisms, which guarantees a very low misclassification rate. Comparing to the MLP's, it yields fast learning and requires a simple hardware architecture. We also introduce a new coding scheme to reduce the misclassification rate. We have prepared two databases: one with 135,000 digit patterns and the other with 117,000 letter patterns, and have applied the proposed method for printed character recognition, which shows that the method reduces the misclassification rate significantly without sacrificing the correct recognition rate.

  • PDF

AUTOMATIC ROAD RECOGNITION AND STEER CONTROL FOR AUTONOMOUS LAND VEHICLE (무인 주행을 위한 도로 인식 및 핸들 제어)

  • Chung, Hong;Lee, Sang-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.497-499
    • /
    • 1998
  • 비젼 시스템을 바탕으로 한 무인 주행 시스템은 카메라로부터 입력된 영사에서 도로와 비 도로를 적절히 인식하여 그것을 바탕으로 주행을 위한 여러 장치들을 제어하는 시스템이라 할 수 있다. 한편 이와 같이 영상의 인식 결과가 핸들 제어나 속도 제어의 성능을 결정할 때 무엇보다 도로의 환경 변화에 강건한 비젼 시스템의 구현이 요구된다. 본 논문에서는 비젼 시스템과 핸들 제어 시스템 두 부분을 구현하였는데, 비젼 시스템에서는 입력 영상에 대해 학습이 가능한 Multilayer Perceptron(MLP)을 이용하여 도로와 비 도로를 적절한 신뢰도로 나눈 후 피라미드 알고리즘을 거쳐 최종 도로 영역을 추출해 낸다. 핸들 제어를 위해 도로 영역의 외곽선을 모델링한 후 차량의 주행 방향 벡터를 구한다. 그 값이 핸들 제어 시스템에서의 MLP의 입력이 되어 차량의 핸들 각도를 결정하게 된다. 끝으로 옥외 차량 시뮬레이션을 통하여 본 논문에서 제안된 알고리즘의 유용성을 확인한다.

  • PDF

Stduy of Local Weather forecast with MLP Neural Network (신경망을 이용한 국지 기상연구)

  • Kim, Min-Jin;Lee, Yill-Byung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.415-417
    • /
    • 2008
  • The meteorological data comes out pouring every moment. This paper deals with the neural network for weather forecast. Finally, we compare neural network with decision tree. As a result, it is suitable that Fog Forecasting Method, and I could get conclusion that the correctness rate and efficiency of Fog Forecasting Method that use this are very high.

  • PDF

A research on improving correctness of cardiac disorder data by using the Decision Tree Classifier (Decision Tree 분류기를 사용한 심전도 데이터 정확도 향상에 관한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Il;Shin, Dong-Kyoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.507-509
    • /
    • 2012
  • 심전도 질환 데이터는 일반적으로 분류기를 사용한 실험이 많다. 심전도 신호는 QRS-Complex와 R-R interval을 추출하는 경우가 많은데 본 실험에서는 R-R interval을 추출하여 실험하였다. 심전도 데이터의 분류 실험은 일반적으로 SVM(Support Vector Machine)과 MLP(Multilayer Perceptron)으로 실험되지만 본 실험은 Decision Tree를 사용하여 정확도 향상을 추구하였다. 그리고 정확도 비교 분석을 위해 SVM과 MLP 분류기 실험을 같이 수행하였고, 동일한 데이터와 간격으로 실험한 타 논문의 결과와 비교해 보았다. Decision Tree를 다른 분류기와 타 논문의 결과와 비교해 보니 정확도 부분에서는 Decision Tree가 가장 우수하였다.

Film line scratch detection using neural networks (신경망을 이용한 오래된 필름에서의 스크래치 검출)

  • Kim Kyung-tai;Kim Eun-yi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.868-870
    • /
    • 2005
  • 스크래치는 오래된 필름에서 가장 많이 나타나는 손상 요인이다. 고화질의 멀티미디어 서비스를 제공하기 위해서는 이러한 스크래치들은 반드시 검출 및 복원되어야 한다. 이러한 중요성 때문에 지금까지 많은 복원 알고리즘이 개발되어 왔으나, 스크래치 영역의 자동검출에 대한 연구는 거의 이루어지지 않은 실정이다. 따라서 본 논문에서는 자동으로 스크래치영역을 추출할 수 있는 신경망 기반의 검출 방법을 제안한다. 다층 퍼셉트론 (Multi-layer perceptron: MLP)을 이용하여 스크래치영역과 비 스크래치영역을 구분하는데, 이 MLP는 다양한 크기의 스크래치를 검출하기 위해 다양한 크기의 입력 영상에 대해 적용된다. 제안된 방법의 평가를 위해 principal/ secondary 스크래치, alone/not-alone 스크래치, moving/static 스크래치등의 다양한 종류의 스크래치를 가진 영상에 대해 실험이 이루어졌고, 그 결과 제안된 방법의 강건함과 효율성을 입증되었다.

  • PDF

Recognizing Facial Expressions Using a Neural Network (신경망을 이용한 얼굴 표정인식)

  • 신영숙;이일병
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.101-105
    • /
    • 1998
  • 기존의 표정인식 연구는 Ekman의 기본정서모형의 특에 의하여 표정인식이 이루어져왔다. 그러나 이러한 6가지 기본정서(행복, 놀람, 공포, 분노, 혐오, 슬픔)에 의한 표정인식은 6개 정서 중에서 선택하는 간제 선택법이 아닌 자유응답방식을 택했을때는 훨씬 인식률이 떨어진다. 이는 표정이 기본정서이외에도 여러 가지 미묘한 마음상태를 표현하고 있기 때문이다. 본 연구는 섬세한 표정인식을 우한 방법으로, 차원모형을 근거로 MLP를 적용한 표정인식을 수행하였다. 차원 모형에 의한 표정은 3가지 차원으로 하나의 표정을 이룬다. 3가지 차원은 쾌-불쾌, 각성-수면과 외부지향-내부지향이다. 3가지 차원을 갖는 각각의 표정은 MLP에 의하여 쾌-불쾌차원 68%, 각성-수면차원 60%, 외부지향-내부지향차원 76%의 인식률을 보였다. 연구결과에서 차원모형에 근거한 표정인식을 통하여 기존의 표정인식을 통하여 기존의 기본정서모형의 한계성을 극복하고 섬세한 표정인식을 수행할 수 있었다.

  • PDF

Feature Extraction of Basal Cell Carcinoma with Decision Tree (결정 트리를 이용한 기저 세포암 특징 추출)

  • Park, Aa-Ron;Baek, Seong-Joon;Won, Yong-Gwan;Kim, Dong-Kook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.239-240
    • /
    • 2006
  • In this study, we examined all peaks of confocal Raman spectra as peaks are the most important features for discrimination between basal cell carcinoma (BCC) and normal tissue (NOR). 14 peaks were extracted from these peaks using decision tree. For dimension reduction, frequently selected 4 peaks were chosen. They are located at 1014, 1095, 1439, $1523cm^{-1}$. These peaks were used as an input feature of the multilayer perceptron networks (MLP). According to the experimental results, MLP gave classification error rate of about 6.5%.

  • PDF

Automatic Basal Cell Carcinoma Detection using Confocal Raman Spectra (공초점 라만스펙트럼을 이용한 자동 기저세포암 검출)

  • Min, So-Hee;Park, Aaron;Baek, Seong-Joon;Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • Raman spectroscopy has strong potential for providing noninvasive dermatological diagnosis of skin cancer. In this study, we investigated two classification methods with maximum a posteriori (MAP) probability and multi-layer perceptron (MLP) classification. The classification framework consists of preprocessing of Raman spectra, feature extraction, and classification. In the preprocessing step, a simple windowing method is proposed to obtain robust features. Classification results with MLP involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic Basal Cell Carcinoma (BCC) detection.

  • PDF

Development of Diabetes Mellitus prediction model using artificial neural network (당뇨병 예측을 위한 신경망 모델 개발에 관한연구)

  • 서혜숙;최진욱;김희식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.67-70
    • /
    • 1998
  • There were many cases to apply artificial intelligence to medicine. In this paper, we present the prediction model of the development of the NIDDM(noninsulin-dependent diabetes mellitus). It is not difficult that doctor diagnose patient as DM(diabetes mellitus). However NIDDM is usually developmented later on 40 years old and symptom appeares gradually. So screening test or prediction model is needed absolutely. Our model predicts development of NIDDM with still normal data 2 year ago. Prediction models developed are both MLP(multilayer perceptron) with backpropagation training and RBFN(radial basis function network). Performance of both models were evaluated with likelihood ratio. MLP was about two and RBFN was about three. We expect that models developed can prevent development of DM and utilize normal data.

  • PDF