• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.03 seconds

Quality Characteristics of Chicken Patties with added Mulberry Leaves Powder (뽕잎을 첨가한 닭고기 Patty의 품질특성에 관한 연구)

  • Kim Mi-Won;Ahn Mung-Shoo;Lim Young-Hee
    • Korean journal of food and cookery science
    • /
    • v.21 no.4 s.88
    • /
    • pp.459-465
    • /
    • 2005
  • It has been known that the mulberry leaf is effective in many diseases. Nowadays, the pharmacological effects on diabetes mellitus of mulberry leaves have been confirmed and they are used for many aspects. And Mulberry leaves are also hewn to be effective in the prevention of diabetics, because of their rich amino acids and fibers. From the results of sensory evaluation, the addition of up to $0.5\%$ MLP(mulberry leaf patty), to the chicken patties induced no significant differences in texture, appearance, and color until $0.5\%$ adding of MLP. However, chicken patties with added $0\%$, and $0.25\%$ added of MLP were shown have the highest acceptability, so these levels were thought to be the proper addition amounts of MLP to the chicken patty. Brightness(L) of these patties was the highest in the $0\%$ group as (55.63) and decreased with increasing adding amount of MLP level. Redness(a) was decreased with increasing adding amount of MLP and appeared as ueenish. Yellowness(b) was the lowest in the $0\%$ MLP addition group as (13.31) and increased with increasing MLP level. Hardness was the highest in the chicken patty with $0.25\%$ added MLP, and the lowest value in the chicken patty with $0.5\%$ added MLP. Cohesiveness was the highest in $0\%$ added MLP added chicken patty and springiness was the highest in $0.5\%$ added MLP added chicken patty. But not significantly. Also Brittleness was similar among the various chicken patties with no significantly difference. As for the composition of fatty acids in the chicken patties with added MLP, saturated fatty acids were decreased and unsaturated fatty acids were increased with increasing MLP Especially, the contents of essential fatty acids showed a largely increasing tendency in the chicken patties with added MLP Linoleic acid, linolenic acid, and arachidonic acid were increased to $9.38mg\%,\;0.65mg\%\;and\;1.28mg\%$, respectively in chicken patty with $1.0\%$ added MLP.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.

A Study on Modified MLP Learning using Pretrained RBM (RBM 선행학습을 이용한 개선 MLP 학습에 관한 연구)

  • Kim, Tae-Hun;Lee, Yill-Byung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.380-384
    • /
    • 2007
  • MLP(Multi-Layer Perceptron)를 이용한 학습은 간단한 구조에도 비선형 분류가 가능하다는 장점을 가지고 있다. 하지만 오류역전파 알고리즘을 사용함으로써 시간의 소모가 크고 원치 않는 결과값으로의 수렴가능성을 배제할 수 없다는 단점을 가지고 있다. 이는 초기설정의 의존도가 높기 때문에 발생하는 문제들로 좋은 결과값에 근접한 곳으로 초기화가 이루어지면 좋은 학습 성능을 보이지만 반대로 좋은 결과값으로부터 멀리 떨어진 곳으로 신경망의 초기화가 이루어지면 학습 성능이 현저히 낮아지는 현상을 보인다. 본 논문에서는 MLP 전체의 층을 대상으로 하는 본 학습이 이루어지기 전에 RBM(Restricted Boltzmann Machine)을 이용, 층간 선행학습을 행하고 그 결과로 얻어지는 가중치와 바이어스를 본 MLP 학습의 초기화 데이터로 사용하는 개선 MLP 학습 알고리즘을 제안한다. 이 방법을 사용함으로써 MLP 학습 속도향상은 물론 원치 않는 지역해로의 수렴까지 방지할 수 있어 전체적인 학습 성능향상이 가능하게 된다.

  • PDF

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

An Improvement of the Enrolling Speed for the MLP-Based Speaker Verification System through Reducing Learning Data (MLP 기반 화자증명 시스템에서 학습 데이터 감축을 통한 등록속도 향상방법)

  • 이태승;황병원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.619-621
    • /
    • 2002
  • MLP(multilayer perceptron)는 기존의 패턴인식 방법에 비해 몇 가지 이점을 제공하지만 학습에 비교적 많은 시간을 요구한다. 이 점은 화자증명 시스템의 인식방법으로서 MLP를 사용할 경우 등록시간이 길어지는 문제를 발생시킨다. 본 논문에서는 기존의 시스템에서 채택한 화자군집 방법을 응용하여 MLP 학습에 필요만 배경화자 수를 줄임으로써 화자등록 시간을 단축하는 방법을 제안한다.

  • PDF

Isolated Digit Recognition Combined with Recurrent Neural Prediction Models and Chaotic Neural Networks (회귀예측 신경모델과 카오스 신경회로망을 결합한 고립 숫자음 인식)

  • Kim, Seok-Hyun;Ryeo, Ji-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.129-135
    • /
    • 1998
  • In this paper, the recognition rate of isolated digits has been improved using the multiple neural networks combined with chaotic recurrent neural networks and MLP. Generally, the recognition rate has been increased from 1.2% to 2.5%. The experiments tell that the recognition rate is increased because MLP and CRNN(chaotic recurrent neural network) compensate for each other. Besides this, the chaotic dynamic properties have helped more in speech recognition. The best recognition rate is when the algorithm combined with MLP and chaotic multiple recurrent neural network has been used. However, in the respect of simple algorithm and reliability, the multiple neural networks combined with MLP and chaotic single recurrent neural networks have better properties. Largely, MLP has very good recognition rate in korean digits "il", "oh", while the chaotic recurrent neural network has best recognition in "young", "sam", "chil".

  • PDF

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

Machine Printed Character Recognition Based on the Combination of Recognition Units Using Multiple Neural Networks (다중 신경망을 이용한 인식단위 결합 기반의 인쇄체 문자인식)

  • Lim, Kil-Taek;Kim, Ho-Yon;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.777-784
    • /
    • 2003
  • In this Paper. we propose a recognition method of machine printed characters based on the combination of recognition units using multiple neural networks. In our recognition method, the input character is classified into one of 7 character types among which the first 6 types are for Hangul character and the last type is for non-Hangul characters. Hangul characters are recognized by several MLP (multilayer perceptron) neural networks through two stages. In the first stage, we divide Hangul character image into two or three recognition units (HRU : Hangul recognition unit) according to the combination fashion of graphemes. Each recognition unit composed of one or two graphemes is recognized by an MLP neural network with an input feature vector of pixel direction angles. In the second stage, the recognition aspect features of the HRU MLP recognizers in the first stage are extracted and forwarded to a subsequent MLP by which final recognition result is obtained. For the recognition of non-Hangul characters, a single MLP is employed. The recognition experiments had been performed on the character image database collected from 50,000 real letter envelope images. The experimental results have demonstrated the superiority of the proposed method.