• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.029 seconds

Prediction of Software Fault Severity using Deep Learning Methods (딥러닝을 이용한 소프트웨어 결함 심각도 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.113-119
    • /
    • 2022
  • In software fault prediction, a multi classification model that predicts the fault severity category of a module can be much more useful than a binary classification model that simply predicts the presence or absence of faults. A small number of severity-based fault prediction models have been proposed, but no classifier using deep learning techniques has been proposed. In this paper, we construct MLP models with 3 or 5 hidden layers, and they have a structure with a fixed or variable number of hidden layer nodes. As a result of the model evaluation experiment, MLP-based deep learning models shows significantly better performance in both Accuracy and AUC than MLPs, which showed the best performance among models that did not use deep learning. In particular, the model structure with 3 hidden layers, 32 batch size, and 64 nodes shows the best performance.

The Temporal Disaggregation Model for Nonlinear Pan Evaporation Estimation (비선형 증발접시 증발량 산정을 위한 시간적 분해모형)

  • Kim, Sungwon;Kim, Jung-Hun;Park, Ki-Bum;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.399-412
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the temporal disaggregation of the yearly pan evaporation (PE) data, Republic of Korea. The neural networks models consist of multilayer perceptron neural networks model (MLP-NNM) and generalized regression neural networks model (GRNNM), respectively. And, for the performances evaluation of the neural networks models, they are composed of training and test performances, respectively. The three types of data such as the historic, the generated, and the mixed data are used for the training performance. The only historic data, however, is used for the testing performance. From this research, we evaluate the application of MLP-NNM and GRNNM for the temporal disaggregation of nonlinear time series data. We should, furthermore, construct the credible monthly PE data from the temporal disaggregation of the yearly PE data, and can suggest the available data for the evaluation of irrigation and drainage networks system.

Comparison of Off-the-Shelf DCNN Models for Extracting Bark Feature and Tree Species Recognition Using Multi-layer Perceptron (수피 특징 추출을 위한 상용 DCNN 모델의 비교와 다층 퍼셉트론을 이용한 수종 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1155-1163
    • /
    • 2020
  • Deep learning approach is emerging as a new way to improve the accuracy of tree species identification using bark image. However, the approach has not been studied enough because it is confronted with the problem of acquiring a large volume of bark image dataset. This study solved this problem by utilizing a pretrained off-the-shelf DCNN model. It compares the discrimination power of bark features extracted by each DCNN model. Then it extracts the features by using a selected DCNN model and feeds them to a multi-layer perceptron (MLP). We found out that the ResNet50 model is effective in extracting bark features and the MLP could be trained well with the features reduced by the principal component analysis. The proposed approach gives accuracy of 99.1% and 98.4% for BarkTex and Trunk12 datasets respectively.

A study on compensation of incorrect recognition on HMM using multilayer perceptrons (신경망을 이용한 HMM의 오인식 보상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.27-30
    • /
    • 2000
  • 본 논문은 HMM(Hidden Markov Model)을 이용하여 인식을 수행할 경우의 오류를 최소화 할 수 있는 후 처리 과정으로 신경망을 결합시켜 HMM 단독으로 사용하였을 때 보다 높은 인식률을 얻을 수 있는 HMM과 신경망의 하이브리드시스템을 제안한다. HMM을 이용하여 학습한 후 학습에 참여하지 않은 데이터를 인식하였을 때 오인식 데이터를 정인식으로 인식하도록 HMM의 출력으로 얻은 각 출력확률을 후 처리에 사용될 MLP(Multilayer Perceptrons)의 학습용으로 사용하여 MLP를 학습하여 HMM과 MLP을 결합한 하이브리드 모델을 만든다. 이와 같은 HMM과 신경망을 결합한 하이브리드 모델을 사용하여 단독 숫자음과 4연 숫자음 데이터에서 실험한 결과 HMM 단독으로 사용하였을 때 보다 각각 약 $4.5\%$, $1.3\%$의 인식률 향상이 있었다. 기존의 하이브리드 시스템이 갖는 많은 학습시간이 소요되는 문제점과 실시간 음성인식시스템을 구현할 때의 학습데이터의 부족으로 인한 인식률 저하를 해결할 수 있는 방법임을 확인할 수 있었다.

  • PDF

Development of Temporal Disaggregation Model using Neural Networks 1. Application of the Historic Data (신경망모형을 이용한 시간적 분해모형의 개발 1. 실측자료의 적용)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1207-1210
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Development of Temporal Disaggregation Model using Neural Networks 3. Application of the Mixed Data (신경망모형을 이용한 시간적 분해모형의 개발 3. 혼합자료의 적용)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1215-1218
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the mixed data The mixed data involves the historic data and the generated data using PARMA (1,1). And, the testing data consist of the only historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Development of Temporal Disaggregation Model using Neural Networks 2. Application of the Generated Data (신경망모형을 이용한 시간적 분해모형의 개발 2. 모의자료의 적용)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1211-1214
    • /
    • 2009
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training data consist of the generated data using PARMA (1,1). And, the testing data consist of the historic data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Decomposition Analysis of Time Series Using Neural Networks (신경망을 이용한 시계열의 분해분석)

  • Jhee, Won-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF

Feature Extraction on a Periocular Region and Person Authentication Using a ResNet Model (ResNet 모델을 이용한 눈 주변 영역의 특징 추출 및 개인 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1347-1355
    • /
    • 2019
  • Deep learning approach based on convolution neural network (CNN) has extensively studied in the field of computer vision. However, periocular feature extraction using CNN was not well studied because it is practically impossible to collect large volume of biometric data. This study uses the ResNet model which was trained with the ImageNet dataset. To overcome the problem of insufficient training data, we focused on the training of multi-layer perception (MLP) having simple structure rather than training the CNN having complex structure. It first extracts features using the pretrained ResNet model and reduces the feature dimension by principle component analysis (PCA), then trains a MLP classifier. Experimental results with the public periocular dataset UBIPr show that the proposed method is effective in person authentication using periocular region. Especially it has the advantage which can be directly applied for other biometric traits.

An Onset Detection Scheme for Vocal Queries Based on Dynamic Expansible MLP (동적 확장 가능한 다중 계층 신경망에 기반한 음성 질의의 onset 검출 기법)

  • Han, Byeong-Jun;Rho, Seung-Min;Hwang, Een-Jun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.422-426
    • /
    • 2007
  • 음성 질의에서 효율적으로 onset을 검출하기 위한 연구는 다양하게 이루어져 왔다. 특히 대부분의 연구는 확률론적 모델에서 큰 성과를 나타내고 있다. 그러나 이러한 모델들은 변화나 확장이 쉽지 않다는 단점을 가지고 있다. 본 논문에서는 동적 확장 가능한 다중 계층 신경망(Dynamic Expansible MLP)을 제안하여, 기존 방법론의 확장 가능성을 모색한다. 또한, 음성 질의의 onset을 검출하기 위해 MLP를 활용하기 위한 모델을 제시한다.

  • PDF