• 제목/요약/키워드: MLP Classification model

검색결과 51건 처리시간 0.021초

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발 (Development of sound location visualization intelligent control system for using PM hearing impaired users)

  • 조용현;최진영
    • 융합보안논문지
    • /
    • 제22권2호
    • /
    • pp.105-114
    • /
    • 2022
  • 본 논문은 퍼스널 모빌리티(Personal Mobility, PM)를 이용하는 청각 장애인에게 소리가 발생하는 도래각(Direction of Arrival, DOA)을 시각화하는 지능형 제어 시스템을 제시하며 도로에서 발생하는 경보음, 크락션 등 소리로 인한 위험한 상황들을 인지하고 예방하고자 한다. 소리 위치 추정 방법은 GCC-PHAT(Generalized Cross-Correlation Phase Transform) 기반 도착 지연 시간(Time Difference of Arrival, TDOA)을 특징으로 갖는 머신러닝 분류 모델을 사용한다. 도로 상황을 재현한 실험 환경에서 각각 풍속 0, 5.8, 14.2, 26.4km/h의 조건에 따라 학습 데이터를 추출한 후 학습한 4가지 분류 모델들을 Grid search cross validation으로 비교하며 성능이 가장 우수한 MLP(Multi-Layer Perceptron) 모델을 알고리즘으로 적용하였다. 최종적으로 바람이 발생하였을 때 제안된 알고리즘이 평균 90.7%의 정확도를 나타내었으며, 이는 기존의 일반적인 소리 위치 추정기법보다 평균 7.6-11.5% 정도의 성능 향상을 보이는 것이다.

딥러닝 기반 BIM 부재 자동분류 학습모델의 성능 향상을 위한 Ensemble 모델 구축에 관한 연구 (Advanced Approach for Performance Improvement of Deep Learningbased BIM Elements Classification Model Using Ensemble Model)

  • 김시현;이원복;유영수;구본상
    • 한국BIM학회 논문집
    • /
    • 제12권2호
    • /
    • pp.12-25
    • /
    • 2022
  • To increase the usability of Building Information Modeling (BIM) in construction projects, it is critical to ensure the interoperability of data between heterogeneous BIM software. The Industry Foundation Classes (IFC), an international ISO format, has been established for this purpose, but due to its structural complexity, geometric information and properties are not always transmitted correctly. Recently, deep learning approaches have been used to learn the shapes of the BIM elements and thereby verify the mapping between BIM elements and IFC entities. These models performed well for elements with distinct shapes but were limited when their shapes were highly similar. This study proposed a method to improve the performance of the element type classification by using an Ensemble model that leverages not only shapes characteristics but also the relational information between individual BIM elements. The accuracy of the Ensemble model, which merges MVCNN and MLP, was improved 0.03 compared to the existing deep learning model that only learned shape information.

인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘 (Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network)

  • 김영진;김형준;한준영;이석
    • 한국산업융합학회 논문집
    • /
    • 제23권2_2호
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

종양 분류를 위한 마이크로어레이 데이터 분류 모델 설계와 구현 (The Design and Implement of Microarry Data Classification Model for Tumor Classification)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1924-1929
    • /
    • 2007
  • 오늘날 인간 프로젝트와 같은 종합적 인 연구의 궁극적 목적을 달성하기 위해서는 이 들 연구로부터 획득한 대량의 관련 데이터에 대해 새로운 현실적 의미를 부여할 수 있어야 한다. 마이크로어레이를 기반으로 하는 종양 분류 방법은 종양 종류에 따라 다르게 발현되는 유전자 양상을 통계적으로 발견함으로써 정확한 종양 분류에 기여 할 수 있다. 따라서 현재의 마이크로어레이 기술을 이용해서 효과적으로 종양을 분류하기 위해서는 특정 종양 분류와 밀접하게 관련이 있는 정보력 있는 유전자를 선택하는 과정이 필수적이다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용해 데이터의 정규화를 거쳐 정보력 있는 유전자 목록을 별도로 추출하여 보다 정확한 종양 분류 모델을 구축하고 각각의 실험 결과들을 비교 분석함으로써 성능평가를 하였다. 피어슨 적률 상관 계수를 이용하여 선택된 유전자들을 멀티퍼셉트론 분류기로 분류한 결과 98.6%의 정확도를 보였다.

데이터 마이닝에서 패턴 분류를 위한 다중 SVM 분류기 (Multiple SVM Classifier for Pattern Classification in Data Mining)

  • 김만선;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.289-293
    • /
    • 2005
  • 패턴 분류는 실세계의 객체를 표현한 다양한 형태의 패턴 정보를 추출하여, 이것이 어떤 부류(클래스)인가를 결정하는 것이다. 패턴 분류 기술은 데이터 마이닝, 산업 자동화나 업무자동화를 위한 컴퓨터 응용 소프트웨어 기술로서 현재 다양한 분야에서 활용되고 있다. 패턴 분류 기술의 최대 목표는 분류 성능 향상이며 이것을 위해 지난 40년간 많은 연구자들이 다양한 접근 방법들을 시도해 왔다. 주로 이용되는 단일 분류 방법들로는 패턴들의 확률적 추론에 기반한 베이즈 분류기, 결정 트리, 거리함수를 이용하는 방법, 신경망, 군집화 등이 있으나 대용량 다차원 데이터를 분석하기에는 효율적이지 못하다. 따라서 상호 보완적인 여러 분류기들을 사용해 결합을 통하여 성능 향상에 도움을 주고 있는 다중 분류기 시스템에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 다중 SVM(Support Vector Machine) 분류기에 관한 기존 연구의 문제점을 지적하고 새로운 모델을 제안한다. SVM을 다중 클래스 분류기로 확장하기 위해 일대다 정책을 기반으로 하여 각각의 SVM 출력값을 비선형 패턴을 갖는 신호로 간주하고 이를 신경망에 학습하여 최종 분류 성능 결과를 결합하는 모델인 BORSE(Bootstrap Resampling SVM by Ensemble)를 제안한다.

Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식 (Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers)

  • 장길진;조아라;박정식;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.139-146
    • /
    • 2014
  • 본 논문에서는 얼굴 영상으로부터 자동으로 사람의 감정을 인식하는 효과적인 방법을 제안한다. 얼굴 표정으로부터 감정을 파악하기 위해서는 카메라로부터 얼굴영상을 입력받고, ASM (active shape model)을 이용하여 얼굴의 영역 및 얼굴의 주요 특징점을 추출한다. 추출한 특징점으로부터 각 장면별로 49차의 크기 및 변이에 강인한 특징벡터를 추출한 후, 통계기반 패턴분류 방법을 사용하여 얼굴표정을 인식하였다. 사용된 패턴분류기는 Naive Bayes, 다중계층 신경회로망(MLP; multi-layer perceptron), 그리고 SVM (support vector machine)이며, 이중 SVM을 이용하였을 때 가장 높은 최종 성능을 얻을 수 있었으며, 6개의 감정분류에서 50.8%, 3개의 감정분류에서 78.0%의 인식결과를 보였다.

스크린 사용 여부 및 사용 디바이스 감지를 위한 머신러닝 모델 성능 비교 (Performance Comparison of Machine Learning Models to Detect Screen Use and Devices)

  • 황상원;김동우;이주환;강승우
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.584-590
    • /
    • 2020
  • 일상생활에서 디지털 스크린을 오랜 시간 사용하면 눈의 피로, 안구 건조, 두통 등 컴퓨터 시각 증후군을 경험하게 된다. 컴퓨터 시각 증후군을 예방하기 위해서는 스크린 사용 시간을 제한하고 수시로 휴식을 취하는 것이 중요하다. 최근 스마트폰에서는 스크린 사용 시간을 알 수 있도록 도와주는 다양한 애플리케이션이 존재한다. 하지만, 사용자는 스마트폰 스크린뿐만 아니라 데스크탑, 노트북, 태블릿 등 다양한 스크린을 보기 때문에 이러한 앱만으로는 한계가 있다. 본 논문에서는 color, IMU, lidar 센서 데이터를 이용하여, 사용 중인 스크린 디바이스를 감지하는 머신 러닝 기반 모델을 제안하고 여러 가지 모델의 성능을 비교한다. 성능 비교 결과 신경망 기반 모델이 전통적인 머신 러닝 모델보다 높은 F1 스코어를 보였다. 신경망 기반 모델에서는 MLP, CNN 기반 모델이 LSTM 기반 모델보다 높은 스코어를 보였으며, 전통적인 머신 러닝 모델에서는 RF 모델이 가장 우수했으며, 다음으로는 SVM 모델이었다.

Multi Label Deep Learning classification approach for False Data Injection Attacks in Smart Grid

  • Prasanna Srinivasan, V;Balasubadra, K;Saravanan, K;Arjun, V.S;Malarkodi, S
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2168-2187
    • /
    • 2021
  • The smart grid replaces the traditional power structure with information inventiveness that contributes to a new physical structure. In such a field, malicious information injection can potentially lead to extreme results. Incorrect, FDI attacks will never be identified by typical residual techniques for false data identification. Most of the work on the detection of FDI attacks is based on the linearized power system model DC and does not detect attacks from the AC model. Also, the overwhelming majority of current FDIA recognition approaches focus on FDIA, whilst significant injection location data cannot be achieved. Building on the continuous developments in deep learning, we propose a Deep Learning based Locational Detection technique to continuously recognize the specific areas of FDIA. In the development area solver gap happiness is a False Data Detector (FDD) that incorporates a Convolutional Neural Network (CNN). The FDD is established enough to catch the fake information. As a multi-label classifier, the following CNN is utilized to evaluate the irregularity and cooccurrence dependency of power flow calculations due to the possible attacks. There are no earlier statistical assumptions in the architecture proposed, as they are "model-free." It is also "cost-accommodating" since it does not alter the current FDD framework and it is only several microseconds on a household computer during the identification procedure. We have shown that ANN-MLP, SVM-RBF, and CNN can conduct locational detection under different noise and attack circumstances through broad experience in IEEE 14, 30, 57, and 118 bus systems. Moreover, the multi-name classification method used successfully improves the precision of the present identification.

Neural-based prediction of structural failure of multistoried RC buildings

  • Hore, Sirshendu;Chatterjee, Sankhadeep;Sarkar, Sarbartha;Dey, Nilanjan;Ashour, Amira S.;Balas-Timar, Dana;Balas, Valentina E.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.459-473
    • /
    • 2016
  • Various vague and unstructured problems encountered the civil engineering/designers that persuaded by their experiences. One of these problems is the structural failure of the reinforced concrete (RC) building determination. Typically, using the traditional Limit state method is time consuming and complex in designing structures that are optimized in terms of one/many parameters. Recent research has revealed the Artificial Neural Networks potentiality in solving various real life problems. Thus, the current work employed the Multilayer Perceptron Feed-Forward Network (MLP-FFN) classifier to tackle the problem of predicting structural failure of multistoried reinforced concrete buildings via detecting the failure possibility of the multistoried RC building structure in the future. In order to evaluate the proposed method performance, a database of 257 multistoried buildings RC structures has been constructed by professional engineers, from which 150 RC structures were used. From the structural design, fifteen features have been extracted, where nine features of them have been selected to perform the classification process. Various performance measures have been calculated to evaluate the proposed model. The experimental results established satisfactory performance of the proposed model.