• Title/Summary/Keyword: MLP(Multi-Layer Perceptron)

Search Result 234, Processing Time 0.025 seconds

A Novel Scheme for detection of Parkinson’s disorder from Hand-eye Co-ordination behavior and DaTscan Images

  • Sivanesan, Ramya;Anwar, Alvia;Talwar, Abhishek;R, Menaka.;R, Karthik.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4367-4385
    • /
    • 2016
  • With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.

An Intelligent System of Marker Gene Selection for Classification of Cancers using Microarray Data (마이크로어레이 데이터를 이용한 암 분류 표지 유전자 선별 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2365-2370
    • /
    • 2010
  • The method of cancer classification based on microarray could contribute to being accurate cancer classification by finding differently expressing gene pattern statistically according to a cancer type. Therefore, the process to select a closely related informative gene with a particular cancer classification to classify cancer using present microarray technology with effect is essential. In this paper, the system can detect marker genes to likely express the most differentially explaining the effects of cancer using ovarian cancer microarray data. And it compare and analyze a performance of classification of the proposed system with it of established microarray system using multi-perceptron neural network layer. Microarray data set including marker gene that are selected using ANOVA method represent the highest classification accuracy of 98.61%, which show that it improve classification performance than established microarray system.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

Context-adaptive Phoneme Segmentation for a TTS Database (문자-음성 합성기의 데이터 베이스를 위한 문맥 적응 음소 분할)

  • 이기승;김정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • A method for the automatic segmentation of speech signals is described. The method is dedicated to the construction of a large database for a Text-To-Speech (TTS) synthesis system. The main issue of the work involves the refinement of an initial estimation of phone boundaries which are provided by an alignment, based on a Hidden Market Model(HMM). Multi-layer perceptron (MLP) was used as a phone boundary detector. To increase the performance of segmentation, a technique which individually trains an MLP according to phonetic transition is proposed. The optimum partitioning of the entire phonetic transition space is constructed from the standpoint of minimizing the overall deviation from hand labelling positions. With single speaker stimuli, the experimental results showed that more than 95% of all phone boundaries have a boundary deviation from the reference position smaller than 20 ms, and the refinement of the boundaries reduces the root mean square error by about 25%.

Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers (Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식)

  • Jang, Gil-Jin;Jo, Ahra;Park, Jeong-Sik;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.139-146
    • /
    • 2014
  • This paper proposes an efficient method for automatically distinguishing various facial expressions. To recognize the emotions from facial expressions, the facial images are obtained by digital cameras, and a number of feature points were extracted. The extracted feature points are then transformed to 49-dimensional feature vectors which are robust to scale and translational variations, and the facial emotions are recognized by statistical pattern classifiers such Naive Bayes, MLP (multi-layer perceptron), and SVM (support vector machine). Based on the experimental results with 5-fold cross validation, SVM was the best among the classifiers, whose performance was obtained by 50.8% for 6 emotion classification, and 78.0% for 3 emotions.

Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning (딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구)

  • Lim, Soo-Hyeon;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • Data analysis research using deep learning has recently been studied in various field. In this paper, we conduct a GNSS (Global Navigation Satellite System)-based meteorological study applying deep learning by estimating the ZWD (Zenith tropospheric Wet Delay) through MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory) models. Deep learning models were trained with meteorological data and ZWD which is estimated using zenith tropospheric total delay and dry delay. We apply meteorological data not used for learning to the learned model to estimate ZWD with centimeter-level RMSE (Root Mean Square Error) in both models. It is necessary to analyze the GNSS data from coastal areas together and increase time resolution in order to estimate ZWD in various situations.

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Development of EMD-based Fault Diagnosis System for Induction Motor (EMD 기반의 유도 전동기 고장 진단 시스템 개발)

  • Kang, Jungsun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.675-681
    • /
    • 2014
  • This paper proposes a fault diagnosis system for an induction motor. This system uses empirical mode decomposition(EMD) to extract fault signatures and multi-layer perceptron(MLP) neural network to facilitate an accurate fault diagnosis. EMD can not only decompose a signal adaptively but also provide intrinsic mode functions(IMFs) containing natural oscillatory modes of the signal. However, every IMF does not represent fault signature, an IMF selection algorithm based on harmonics and their energy of each IMF is proposed. The selected IMFs are utilized for fault classification using MLP and this system shows approximately 98 % diagnosis accuracy for the fault vibration signal of the induction motor.

Rail Surface Defect Detection System of Next-Generation High Speed Train (차세대 고속열차의 레일표면 결함 검출 시스템)

  • Choi, Woo-Yong;Kim, Jeong-Yeon;Yang, Il-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.870-876
    • /
    • 2017
  • In this paper, we proposed the automatic vision inspection system using multi-layer perceptron to detect the defects occurred on rail surface. The proposed system consists of image acquisition part and analysis part. Rail surface image is acquired as equal interval using line scan camera and lighting. Mean filter and dynamic threshold is used to reduce noise and segment defect area. Various features to characterize the defects are extracted. And they are used to train and distinguish defects by MLP-classifier. The system is installed on HEMU-430X and applied to analyze the rail surface images acquired from Honam-line at high speed up to 300 km/h. Recognition rate is calculated through comparison with manual inspection results.