• Title/Summary/Keyword: MLFMA Method

Search Result 2, Processing Time 0.018 seconds

Acceleration of the Multi-Level Fast Multipole Algorithm using Double Interpolation Technique (이중 보간 기법을 이용한 MLFMA 가속기법)

  • Yun, Dal-Jae;Kim, Hyung-Ju;Lee, Jae-In;Yang, Seong-Jun;Yang, Woo-Yong;Bae, Jun-Woo;Myung, Noh-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2019
  • This paper proposes an acceleration of the multi-level fast multipole algorithm(MLFMA) by using a double interpolation method. The MLFMA has been primarily used to conduct scattering analysis of electrically large targets, e.g. stealth aircraft. In the MLFMA, radiation functions of each basis functions are first precomputed, and then aggregated. After transfer calculations for the aggregations, each interaction is disaggregated, and then received in the testing function. The key idea of the proposed method is to decrease the sampling rates of the radiation and receiving functions. The computational complexity of the unit sphere integration in terms of the testing functions is thus highly alleviated. The remaining insufficient sampling rate is then complemented by using additional interpolation. We demonstrate the performance of the proposed method through radar cross-section(RCS) calculations for realistic aircraft.

MLFMA for Computation of TM Scattering from Near Resonant Object (유사 공진형 물체에 대한 TM 전자파의 산란계산을 위한 MLFMA방법)

  • ;W. C. Chew
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.735-745
    • /
    • 1998
  • The method of moments has been widely used in the analysis of TM scattering problems. Recently, significant advances in the development of fast and efficient techniques for solving large problems have been reported. In such methods, iterative matrix solvers are preferred by virtue of their speed and low memory requirements. But for near resonant and strong multiple scattering problems, e.g., involving an aircraft engine inlet, a large number of iterations is required for convergence. In this paper, an efficient approximate inverse based preconditioner is used to reduce this number of iterations. By using the matrix partitioning method, the computational is used to reduce this number of iterations. By using the matrix partitioning method, the computational cost for obtaining the approximate inverse is reduced to O(N). We apply this preconditioner to an O(NlogN) algorithm, the multilevel fast multipole algorithm, for the aircraft engine inlet problem. The numerical results show the efficiency of this preconditioner.

  • PDF